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Artificial Intelligence and Pattern
Recognition, Vision, Learning

Isabelle Bloch, Régis Clouard, Marinette Revenu and Olivier Sigaud

Abstract This chapter describes a few problems and methods combining artifi-1

cial intelligence, pattern recognition, computer vision and learning. The intersec-2

tion between these domains is growing and gaining importance, as illustrated in3

this chapter with a few examples. The first one deals with knowledge guided image4

understanding and structural recognition of shapes and objects in images. The second5

example deals with code supervision, which allows designing specific applications6

by exploiting existing algorithms in image processing, focusing on the formulation7

of processing objectives. Finally, the third example shows how different theoretical8

frameworks and methods for learning can be associated with the constraints inherent9

to the domain of robotics.10

1 Introduction11

The intersection between the domains of artificial intelligence (AI), and of pattern12

recognition, computer vision and robotics is getting more and more important and13

visible. The overlap between these domains was significantly enlarged during the14

last years. The objective of this chapter is to show a few aspects of this overlap, in15

particular for high level visual scene understanding and for integrating knowledge16

in processing and interpretation methods.17
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2 I. Bloch et al.

Several topics addressed in other chapters and several of the therein described18

methods can also be associated with problems in pattern recognition, artificial vision19

or image understanding, and robotics. For instance, uncertainty theories are widely20

used for modelling imperfections of data, of objectives and of reasoning procedures,21

as for image fusion. Learning is at the core of many recent developments, such as for22

image mining or for robotics. Multi-agents systems have been exploited for devel-23

oping cooperation between methods in image processing, as well as for developing24

interactions between or with robots. Finally, as a last example, structural repre-25

sentations (graphs, hypergraphs, Bayesian networks, ontologies, knowledge based26

systems…) are naturally used for modelling and interpreting image or video con-27

tent. They allow associating low level information with higher level one and with28

knowledge, to guide the interpretation of the observed scene. This is for instance the29

case in spatial reasoning (see also chapter “Qualitative Reasoning About Time and30

Space” of Volume 1).31

In this chapter, we describe a few examples of these multiple interactions. In32

Sect. 2, an overview of interactions between artificial intelligence and computer33

vision is proposed, in particular for recognizing objects in images, focusing on34

knowledge based systems. While ontologies are more and more developed to guide35

scene understanding, by describing and formalizing concepts related the scene con-36

tents, they are also exploited to describe the objective of image processing. In this37

perspective, Sect. 3 presents code supervision methods for automatically generat-38

ing applications in image processing. Finally, in Sect. 4, the domain of robotics is39

presented under the light of related learning aspects.40

2 AI for Computer Vision and Pattern or Object41

Recognition42

In this section, an overview of interactions between AI and computer vision is pro-43

posed, focusing on knowledge based systems for image and visual scene under-44

standing, pattern or shape recognition in images. The general objective of these45

approaches is to add semantics to the images, by associating visual information and46

features extracted from the images on the one hand, and knowledge or models on47

the other hand (Crevier and Lepage 1997; Le Ber and Napoli 2002).48

One of the main difficulties, beyond knowledge representation and reasoning49

issues, is to establish a matching between perceptual and conceptual levels. The50

perceptual level includes features extracted from images, hence close to pixel (in51

2D) or voxel (in 3D) information. The conceptual level is often given in textual52

form. This problem of matching is known as semantic gap, defined by Smeulders53

et al. (2000) as: “the lack of coincidence between the information that one can extract54

from the visual data and the interpretation that the same data have for a user in a55

given situation”. This problem is close to other problems in AI and robotics, such as56

symbol grounding or anchoring (Harnad 1990; Coradeschi and Saffiotti 1999).57
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Artificial Intelligence and Pattern Recognition, Vision, Learning 3

2.1 Knowledge58

The type of knowledge modelled in knowledge based systems is related to the scene59

and anything that can be useful for its interpretation. According to the classical cate-60

gorization of Matsuyama and Hwang (1990), the following types are distinguished:61

• generic knowledge on the type of scene, describing the objects it contains or may62

contain, the relationships between these objects, or the type of image;63

• specific knowledge about the image, including the observation of the scene and its64

processing, which is required to extract useful information from images;65

• knowledge bridging the semantic gap between a real scene and its observations as66

images.67

2.2 Spatial Relations68

Knowledge about space, in particular about spatial relations, is very important for69

image understanding (Bloch 2005; Kuipers and Levitt 1988). Indeed, human beings70

use intensively spatial relations for describing, detecting and recognizing objects.71

They allow solving ambiguities between objects of similar shape or appearance,72

based on their spatial arrangement, and are often more stable than characteristics of73

objects themselves. This is for instance the case of anatomical structures, as illustrated74

later in this chapter.75

Spatial reasoning has raised a lot of attention in computer vision and pattern76

recognition, in artificial intelligence, in cognitive sciences, in mobile robotics, or in77

geographical information systems. According to the semantic hierarchy proposed78

by Kuipers and Levitt (1988), important spatial relations can be grouped into topo-79

logical and metrical relations. Among the metrical relations, directional and distance80

relations can be distinguished, as well as more complex relations such as “between”81

or “along”.82

In the domainof qualitative spatial reasoning,most representationmodels are sym-83

bolic, often relying on logical formalisms, and mostly deal with topological (Vieu84

1997) or cardinal (directional) (Ligozat 1998) relations (see chapter “QualitativeRea-85

soning about Time and Space” of Volume 1). To reason on real data such as images,86

quantitative or semi-quantitative formalisms aremore expressive. For instance, fuzzy87

models of numerous spatial relations have been proposed (Bloch 2005). They are88

appropriate to address the issue of the semantic gap, for instance using the concept89

of linguistic variable, the semantic of each linguistic value being given by a fuzzy90

set in the concrete domain of the variable. As an example, the fuzzy representa-91

tion of a concept such as “close to” allows representing the imprecision inherent92

to this concept, and instantiating its semantics according to the considered applica-93

tion domain (Hudelot et al. 2008). It also allows answering two main questions in94

structural image understanding:95

420055_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:18/5/2019 Pages: 28 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4 I. Bloch et al.

• to which degree is a spatial relation satisfied between two given objects?96

• what is the area of space in which a spatial relation to a reference object is satisfied97

(up to some degree)?98

Among such fuzzy models of spatial relations, those relying on mathematical mor-99

phology offer a unified representation framework, able to handle purely quantitative,100

purely qualitative, aswell as semi-quantitative or fuzzy representations (Bloch 2006).101

2.3 Knowledge Representation and Organization102

As in other domains, in vision and pattern recognition one may characterize knowl-103

edge representation by:104

• the definition of a representation as a set of syntactic and semantic conventions105

for describing a knowledge element;106

• logical representations, with a level of expressivity depending on the logic;107

• compact representations, where only relevant properties and characteristics are108

explicitly represented;109

• easy manipulation;110

• explicit representation of what is useful for reasoning.111

Since most data in the domain of computer vision and pattern recognition are112

numerical, using logical representations (which are often more compact than numer-113

ical ones) requires to convert such data in a symbolic form.114

Requirements for symbolic representations are ontological, epistemic and com-115

putational. The first two levels impose constraints on the representation language,116

and the third level on the inference mechanisms.117

Recent knowledge based systems can be seen as extensions of classical expert118

systems, by providing different ways for knowledge representation and reasoning.119

A few classical examples include:120

• production rules, which are easy to adapt or extend, and their results can be121

explained; however expressivity highly depends on the involved logics;122

• frames (Minsky 1974), which are declarative systems well adapted to describe123

objects classes based on their attributes and properties; hierarchical links allow124

handling different levels of granularity, with inheritance, specialization or gener-125

alization mechanisms; an example in image processing can be found in Clément126

and Thonnat (1993);127

• semantic networks (Quillian 1967), which rely on a graphical representation of128

a knowledge base, in which vertices represent concepts and objects, and edges129

represent relations; inference rules exploit inheritance from a class of objects to130

a more specific class; their representation as attributed relational graphs is often131

used to model spatial information;132
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Artificial Intelligence and Pattern Recognition, Vision, Learning 5

• conceptual graphs (Sowa 1984; Chein and Mugnier 2008), which represent con-133

cepts and relations as vertices, linked by edges; again graphical representations134

are computationally efficient;135

• ontologies and description logics, which provide a shared, consistent concep-136

tual formalization of knowledge in a given domain (Gruber 1993) (see also137

chapter “Reasoning with Ontologies” of Volume 1).138

In computer vision and image processing, where the environment is only par-139

tially known, early applications of knowledge based systems have been developed140

for program supervision (Clément and Thonnat 1993; Nazif and Levine 1984) and141

for image understanding (Desachy 1990; Hanson and Rieseman 1978; Matsuyama142

1986; McKeown et al. 1985). Specific problems related to focalization of attention,143

adaptation of procedures to revise, repair or maintain consistency, cooperation and144

fusion, coordination could also be added to knowledge based systems (Garbay 2001).145

A renewed interest led recently to several works in these areas.146

For instance, recent works use ontologies to add a semantic level and to solve the147

semantic gap problem. For instance in Town (2006), the terms of a query language are148

anchored in the image domain using supervised learning, for application to keyword149

based image mining. A similar approach was used by Mezaris and Kompatsiaris150

(2004) and Hudelot (2005), who defined an ontology of visual concepts, anchored to151

descriptors extracted from the images. This type of approach allows both performing152

queries in a qualitative way based on the ontology concepts, and filtering or selecting153

relevant results according to their visual features.154

Reasoning procedures associated with these different types of representations155

depend on the involved logic. One of the difficult problems to be solved is the match-156

ing between a knowledge model and information extracted from images, because of157

the semantic gap. This problem is simplified when information is directly linked to158

object representations (Saathoff and Staab 2008; Benz et al. 2004). Otherwise, for159

instancewhenonly anover-segmentation of the image is available (i.e. several regions160

should be merged to be interpreted as an object), methods such as inexact graph161

matching, constraint satisfaction or spatial reasoning have to be developed (Perchant162

and Bloch 2002; Bengoetxea et al. 2002; Deruyver and Hodé 1997, 2009; Colliot163

et al. 2006; Fouquier et al. 2012; Nempont et al. 2013; Atif et al. 2013).164

2.4 Uncertainty165

In image understanding and computer vision, one has to deal with imperfect infor-166

mation. These imperfections are of different natures, and include ambiguity, bias,167

noise, incompleteness, imprecision, uncertainty, inconsistency, conflict…Addition-168

ally, when dealing with dynamic scenes, the information can be variable and evolves169

during time. These imperfections, found similarly in different problems in general170

information processing (Dubois and Prade 2001), may be due to the observed phe-171

nomenon itself, limitations of sensors, image reconstruction and processing methods172
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6 I. Bloch et al.

and algorithms, noise, lack of fiability, representation models, knowledge and con-173

cepts that are handled.174

It is of high importance to account for these imperfections in representationmodels175

and in reasoning methods.176

Themain numerical models used in image processing and understanding tomodel177

uncertainty rely on probability theory and statistics, belief functions, fuzzy sets and178

possibility theory. They were developed in particular in the domain of information179

fusion (Bloch 2008), where the combination of several sources of information aims180

at making better decision while coping with imperfections of information, but also181

to represent structural information such as spatial relations (Bloch 2005).182

In probabilistic representations, the language is constituted byprobability distribu-183

tions on a given reference domain. They account rigorously for randomand stochastic184

uncertainty, but not easily for other types of imperfections, from both semantic and185

formal point of view. Bayesian inference is often used in this framework.186

Belief functions (or Dempster–Shafer theory (Shafer 1976)) rely on a language187

defining several functions (belief function, plausibility…) on the power set of the188

decision space. Such representations cope with both imprecision and uncertainty189

(including of subjective nature), with ignorance and incompleteness, and allow com-190

puting a degree of conflict between data or information sources. The well known191

Dempster orthogonal rule performs a conjunctive combination, while other rules192

propose different types of behaviour in the combination (Denœux 2008).193

In fuzzy sets and possibility theory (Dubois and Prade 1980, 1988; Zadeh 1965),194

the language includes fuzzy sets defined on a domain, or possibility distributions.195

Qualitative, imprecise and vague information can be suitably represented. Inference196

relies on logical rules, and qualitative reasoning is available. The usefulness of fuzzy197

sets for information processing in image and vision can be found at several lev-198

els (Bloch 2003, 2006):199

• the ability of fuzzy sets to represent spatial information in images along with its200

imprecision, at different levels (local, regional, global), and under different forms201

(ranging from purely quantitative to purely qualitative) and different levels of202

granularity;203

• the possibility to represent heterogeneous information, either extracted from the204

images or derived from external knowledge (such as expert or generic knowledge205

about a domain or an applicative problem);206

• the possibility to generalize to fuzzy sets many operations to handle spatial infor-207

mation;208

• the flexibility of combination operators, useful to combine information of different209

natures in various situations.210

More details about uncertainty representations can be found in chapters “Repre-211

sentations of Uncertainty in Artificial Intelligence: Probability and Possibility” and212

“Representations of Uncertainty in Artificial Intelligence: Beyond Probability and213

Possibility” of Volume 1.214
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Artificial Intelligence and Pattern Recognition, Vision, Learning 7

These models have been integrated in the knowledge representation methods215

described above, including ontologies (Hudelot et al. 2008, 2010), for successful216

applications in image understanding.217

2.5 Example: Recognition of Brain Structures in 3D MRI218

The automatic interpretation of complex scenes such as the brain requires a model219

representingknowledgeon the structures present in the scene. In the easiest situations,220

each object has a different appearance, and prior knowledge on it may be sufficient to221

detect and recognize the objects. However, this is not the case in magnetic resonance222

images (MRI) of the brain, since the appearance is not discriminative enough. Other223

properties such as the spatial arrangement of the structures is then very important224

and helpful.1225

Brain anatomy is commonly described in a hierarchical fashion and can be formal-226

ized using ontologies, such as the Foundational Model of Anatomy (FMA) (Rosse227

and Mejino 2003). In addition, the spatial organization of the anatomical structures228

is a major component of linguistic descriptions of the brain anatomy (Hasboun 2005;229

Waxman 2000). The overall structure of the brain is quite stable, while the shapes and230

sizes of the individual structures are prone to substantial variability, and therefore it231

is relevant to include spatial relations in a model of the brain anatomy. This allows232

coping with anatomical variability and offering good generalization properties.233

Graphs are often used to represent the structural information in image interpre-234

tation, where the vertices represent objects or image regions (and they may carry235

attributes such as their shapes, sizes, and colours or grey levels), and the edges carry236

the structural information, such as the spatial relations among objects, or radio-237

metric contrasts between regions. Although this type of representation has become238

popular in the last 30years (Conte et al. 2004), a number of open problems remain239

in its efficient implementation. In one type of approach, the graph is derived from240

the image itself, based on a preliminary segmentation into homogeneous regions,241

and the recognition problem is expressed as a graph matching problem between the242

image and model graphs, which is an annotation problem. However this scheme243

often requires solving complex combinatorial problems (Conte et al. 2004). These244

approaches assume a correct initial segmentation of the image. However, the seg-245

mentation problem is a known challenge in image processing, to which no universal246

solution exists. The segmentation is usually imperfect, and no isomorphism exists247

between the graphs being matched. An inexact matching must then be found, for248

instance by allowing several image regions to be assigned to one model vertex or249

by relaxing the notion of morphism to that of fuzzy morphism (Perchant and Bloch250

2002; Cesar et al. 2005). For example, previous studies (Deruyver and Hodé 1997,251

2009) employ an over-segmentation of the image, which is easier to obtain. A model252

1This section is to a large part adapted from Nempont et al. (2013).
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8 I. Bloch et al.

structure (i.e. a graph vertex) is then explicitly associated with a set of regions, and253

the recognition problem is expressed as a constraint satisfaction problem.254

To deal with the difficulty of obtaining a relevant segmentation, the segmentation255

and recognition can also be performed simultaneously. For instance, in Bloch et al.256

(2003), Colliot et al. (2006), the structures of interest are segmented and recognized257

sequentially, in a pre-calculated order (Fouquier et al. 2008, 2012). The structures258

that are easier to segment are considered first and adopted as reference objects. The259

spatial relations to these structures are encoded in the structural model and are used260

as constraints to guide the segmentation and recognition of other structures. This261

approach benefits from an ontological representation of anatomical knowledge and262

of fuzzy models of spatial relations, which establish the links between concepts and263

image space, thus addressing the semantic gap issue (Hudelot et al. 2008). Due to the264

sequential nature of the process, the errors are potentially propagated. Backtracking265

may then be needed, as proposed by Fouquier et al. (2012).266

To overcome the problems raised by sequential approaches while avoiding the267

need for an initial segmentation, an original method was proposed by Nempont et al.268

(2013). It still employs a structural model, but solves the problem in a global fashion.269

A solution is the assignment of a spatial region to a model object, in a way that sat-270

isfies the constraints expressed in the model. A progressive reduction of the solution271

domain for all objects is achieved by excluding assignments that are inconsistent with272

the structural model. Constraint networks constitute an appropriate framework for273

both the formalization of the problem and the optimization (see chapter “Constraint274

Reasoning” ofVolume2 for constraint reasoningmethods).An original feature of this275

approach is that the regions are not predetermined, but are instead constructed during276

the reduction process. The image segmentation and recognition algorithm therefore277

differs from an annotation procedure, and no prior segmentation of the image into278

meaningful or homogeneous regions is required.More precisely, a constraint network279

is constructed from the structuralmodel, and a propagation algorithm is then designed280

to reduce the search space. Finally, an approximate solution is extracted from the281

reduced search space. This procedure is illustrated in Fig. 1, using the interpretation282

of a brain MRI as an example. The solution space for the left caudate nucleus CNl is283

derived from the constraint “CNl is exterior to the left lateral ventricleLV l”. Once the284

propagation process terminates, the solution space is typically reduced substantially285

for all of the model structures. The final segmentation and recognition results can286

then be obtained using any segmentation method that is constrained by this solution287

space. An example of result in a pathological case is illustrated on one slice in Fig. 2.288

This approach has been extended by Vanegas et al. (2016) to deal with complex289

relations, involving groups of objects, unknown numbers of instances of concepts in290

the images and fuzzy constraints, for applications in remote sensing image under-291

standing.292

A concluding message is that model based understanding is a growing research293

topic, at the cross-road of image processing, computer vision and pattern or object294

recognition on the one hand, and of artificial intelligence on the other hand. The295

association between generic structural models and specific information related to the
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10 I. Bloch et al.

Fig. 2 a Axial slice of a 3D
MRI of a patient with a brain
tumour. b Segmentation and
recognition results for
several internal brain
structures (Nempont et al.
2013)

context, accounting for uncertainty andvariability, allows one to copewith the seman-296

tic gap problem and to propose computationally efficient methods to solve it. These297

approaches are currently further developed for image and video annotation, segmen-298

tation and recognition of structures, spatial reasoning for image exploration, or the299

derivation of high level descriptions of the content of images or image sequences.300

3 Code Supervision for Automatic Image Processing301

The need for automatic image analysis software is becoming increasingly pressing302

as digital image emerges as a privileged source of information. Acquisition devices303

now provide access to previously unknown or inaccessible data that are of strategic304

importance in many fields such as medicine, security, quality control, astronomy,305

environmental protection. However, the multiplicity of these devices leads to the306

production of an ever-expanding volume of data that is impossible to exploit manu-307

ally.308

Image processing is a preliminary stage that aims to prepare the images for subse-309

quent analysis by humans or interpretation systems. It covers all objectives of image-310

to-image transformation that are intended to reduce, refine or organize the initial311

data. Five image processing objectives are usually distinguished: data compression,312

enhancement of visual rendering, restoration of missing information, reconstruc-313

tion of spatio-temporal information (3D or motion), segmentation into more abstract314

primitives (regions or contours) and detection of known objects. Image processing315

has no decision-making power, but its role is crucial since it must ensure that changes316

on images are made without loss or alteration of the relevant information.317

Image processing research traditionally provides its expertise in the form of image318

processing algorithms. Many algorithms covering a wide range of operations have319

been developed. Each algorithm is developed on a presupposed model of informa-320

tion to be processed, which determines its domain of applicability and effectiveness.321

Therefore, there is no universal algorithm. A concrete application should combine322

several of these algorithms according to a top-down, bottom-up or mixed processing323
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Artificial Intelligence and Pattern Recognition, Vision, Learning 11

strategy. Thus, the development consists in selecting, tuning and linking appropri-324

ate algorithms. However, appropriate use of image processing algorithm libraries325

requires highly specialized expertise to knowwhen and how to utilize the algorithms.326

Code supervision systems are designed to provide users with a tool to build their327

own applications by exploiting a library of precoded algorithms. Users no longer328

need to be experts in image processing. Their role is focused on the formulation of329

application objectives. It is the system responsibility to control the code library for330

building programs suited to the application objectives.331

3.1 Formulation of Application Objectives332

The formulation of application objectives is of paramount importance because it is333

used by the system to guide selection, tuning and chaining of codes. Two categories334

of information should be given by users for an exhaustive formulation:335

1. The definition of the image class is required to bridge the sensory and semantic336

gaps (Smeulders et al. 2000) (see Fig. 3). Part of the definition should describe337

the image acquisition process in order to restore information about the observed338

scene that were lost, altered or hidden during the image production. Another part339

should assign a semantics to the scene content in order to specify information340

that has to be considered as relevant for that precise application.341

2. The specification of the processing goals is required to clarify the role of the342

application in the complete analysis system.343

Image Class Definition344

Variousmodels of image class definition have been proposed in the literature whether345

the definition is done by extension or by intension.346

Fig. 3 The sensory gap
results from the loss of
information between the
reality of a scene and its
representation as an image.
The semantic gap separates
the interpretation of a scene
that anyone can make from
an image-based
representation and from a
feature-based description
(Smeulders et al. 2000)
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12 I. Bloch et al.

Fig. 4 Two ways to extensionally describe the vehicle in figure a: b by a mask that specifies the
object pixels, c by a list of patches around points of interest

An extensional definition represents information using an iconic dictionary built347

with image parts. These parts can be specified either bymasks or by patches. A mask348

delineates an object of interest or a specific image area (see example in Fig. 4b.).349

They are used by the system to automatically extract a set of feature values of the350

specified object (colour, shape, size, etc.) or a set of image characteristics of the351

specified area (type of acquisition noise, illumination distribution, etc.). A patch is a352

thumbnail extracted from a sample image that isolates one salient part of an object of353

interest (often localized around a point of interest as shown in Fig. 4c). They are used354

by the system to detect instances of these objects in images from their characteristic355

parts (Agarwal et al. 2004; Leibe et al. 2008). The benefit of extensional definition356

is to limit the cognitive load of users since no representation language is required.357

The drawback is that the same feature extraction or patch selection algorithms are358

used for all applications. Thus, a part of the application definition is assigned by the359

system and cannot be adapted to each application.360

An intensional definition represents information about images using a linguistic361

description. It provides a language to represent the acquisition effect and the scene362

content semantics. Ontologies are widely used for this purpose (Hunter 2001; Bloe-363

hdorn et al. 2005; Town 2006; Renouf et al. 2007; Anouncia and Saravanan 2007;364

Maillot and Thonnat 2008; Neumann and Möller 2008; Gurevich et al. 2009). The365

description language is usually constructed from an ontology domain that provides366

the language primitives. The description of a particular image class is an application367

ontology that is obtained by selection and reification of domain ontology primitives368

(Cãmara 2001). For example, Maillot and Thonnat (2008) propose the “Ontology369

of Visual Concepts” which defines the concepts of texture, colour, geometry and370

topological relations. Figure5 gives a textual representation of the definition of a371

pollen grain with this ontology. To better reflect the variability of the visual man-372

ifestations of the objects in the scene, the language accepts qualitative values for373

the features such as (“pink”, “very circular”, “strongly oblong”) and for the spatial374

relations such as (“in front of ”, “close to”). The advantage of this definition is to375

take greater advantage of the user’s expertise about scene content and thus better376

capture application variability. However, the construction of the solution requires377

quantitative values. Therefore, intensional definition must address the problem of378

symbol grounding in order to connect linguistic symbols to image data values. Sym-379

420055_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:18/5/2019 Pages: 28 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Artificial Intelligence and Pattern Recognition, Vision, Learning 13

Fig. 5 Textual representation of the definition of a pollen grain of type “poaceae” from the “Ontol-
ogy of Visual Concepts” proposed by Maillot and Thonnat (2008)

bol grounding can be based on dictionaries such as the “Colour Naming System”380

(Berk et al. 1982) where the HSL space is divided into 627 distinct colours, each of381

them labelled with a name, or the “Texture Naming System dictionary” (Rao and382

Lohse 1993). However, most often symbol grounding is seen as a learning problem383

from a set of masks. Therefore, usually mixed approaches are preferred. Intensional384

definition is completed with extensional definition that allows anchoring ontology385

concepts into data (Maillot and Thonnat 2008; Hudelot et al. 2008; Clouard et al.386

2010).387

Goal Specification388

The specification of application goals can bemade either by examples of the expected389

results or by tasks to perform.390

According to specification by example, a goal is formulated through reference391

images containing the representation of the results to be obtained on test images.392

Three different representations of the expected results have been proposed in the393

literature:394

• Sketches are lines drawn by the user on test images that give examples of the395

expected contours or regions boundaries (Draper et al. 1999), as in the Fig. 6a.396

• Manual segmentations give the region areas to be obtained on test images (Martin397

et al. 2006), as in the example in Fig. 6b.398

• Scribbles aremarkers that indicate regions of interest without completely delineate399

them (Protire and Sapiro 2007). Generally, scribbles are lines drawn directly inside400

the regions of interest and inside the background region, as in Fig. 6c.401

The advantage of the specification by example paradigm is its quantitative nature402

since it takes values directly into the image data. In addition, it reduces the cognitive403

load of users because no specialized vocabulary is required. The drawback is that404

a reference image is not sufficient to formulate all kinds of goals. Only segmenta-405

tion, detection and possibly enhancement goals are really addressed. Compression,406

restoration and reconstruction goals are not straightforward. Moreover, it does not407

cover all image classes. In particular, it is tedious to implement for 3D images and408

image sequences. Finally, there is no means for varying constraints attached to goals,409

such as “prefer false detection to misdetection” or “prefer no result to imperfect410

result”.411
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14 I. Bloch et al.

Fig. 6 Three different approaches to specify a goal by example: a by sketch, b by manual segmen-
tation, c by scribbles

The specification by task paradigm requires a language. A task describes a system412

functionality by means of a sentence, such as “detect object vehicle” or “segment the413

image”. The advantage of this approach is that it is possible to associate constraints414

to the task in order to restrict its scope. Moreover, all image processing objectives415

can be covered: it is sufficient to name a task and related constraints. The drawback416

is that the formulation is qualitative with no real link to the image data. This has two417

important consequences: first, specification by task is not strongly grounded into418

data, and secondly, there is only a finite number of possible objective formulations.419

That is why recent approaches use mixed approaches that combine specification by420

task and specification by example paradigms. Figure7 presents an ontology (Clouard421

et al. 2010) that covers the definition of the image class by mixing intensional and422

extensional approaches and specifying goals by mixing approaches by task and by423

example.424

3.2 Code Supervision425

The formulation of application objectives is the prerequisite for the development426

of a solution as a processing chain. In the paradigm of code supervision (Thonnat427

and Moisan 2000), image processing techniques are implemented as independent428

executable codes and stored in a library. An image processing program is represented429

in canonical form as a directed graph of codes. Links between codes describe network430

of images and parameter values exchanged between codes. For example, Fig. 8 shows431

a processing chain that performs edge detection by difference of two Gaussians.432

The problem of code supervision was addressed in several ways in the literature433

of which the most advanced are:434

• competitive strategy;435

• plan skeleton instantiation;436

• case-based reasoning;437

• chain planning;438

• incremental result construction.439
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Fig. 7 The concepts of an ontology for formulating image processing goals (Clouard et al. 2010)

Fig. 8 Aprogram is a graph of parametrized executable codes.On the left is given the representation
of an edge detection algorithm using the DOG (Difference of Gaussian) in the form of a code graph.
On the right, the same algorithm is represented as a script of executable codes

Competitive Strategy440

The main idea behind this approach is to exploit the competition between several441

predefined processing strategies. For example, Charroux and Philipp (1995) execute442

several image segmentation chains in parallel, and then build the final result with443

the best segmented regions yielded by each of these chains. The quality of a region444

is measured by its degree of membership to domain object classes, calculated by a445

classifier trained to recognize the domain object classes frommasks made on sample446

images.447

Martin et al. (2006) create competition between multiple image segmentation448

chains and then select the best chain with the best settings. The selection is made off-449

line through supervised learningwhere a set of sample imageswith related handmade450

reference segmentation is used to train the classifier. The resulting chain, with its451

setting, is the one that minimizes the distance between the segmentation obtained on452

test images and the reference segmentation made for these images.453
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16 I. Bloch et al.

Fig. 9 Concepts and basic elements of an image processing ontology which specifies how to solve
a task using operators with regard to a specific context (Gurevich et al. 2009)

The advantage of this approach is that it requires no explicit expertise. Only454

reference object masks or reference images must be provided. The drawback is that455

it relies on processing chains that are fixed and in finite number. Parameter tuning is456

the only possible adaptation.457

Plan Skeleton Instantiation458

This is certainly the approach that has generated the higher number of systems, with459

pioneering work such as: Ocapi (Clément and Thonnat 1993), Vsde (Bodington460

1995), Conny (Liedtke and Blömer 1992), Collage (Lansky et al. 1995) or Mvp461

(Chien and Mortensen 1996).462

The processing expertise is encoded in hierarchical plan skeletons that combine463

along several decomposition levels a task corresponding to a problem with a set464

of codes that constitute elements of a possible chain of processing. Plan skeletons465

are encoded as AND/OR trees that indicate how a task can be decomposed into466

subtasks. Production rules are attached to each node. They are used to select the467

most appropriate branch of the decomposition and parameter values with regard to468

formulation elements.469

Figure9 presents an ontology that models the way to solve a task with a sequence470

of operators with regard to a specific context.471

Compared to competitive strategy, this approach allows chain adjustment to the472

specifications given in the formulation of objectives. However, it requires knowing473

how to identify and represent the expertise for each possible problem type.474
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Artificial Intelligence and Pattern Recognition, Vision, Learning 17

Case-Based Reasoning475

Case-based reasoning exploits processing chains built successfully for past applica-476

tions to process a new “similar” one.477

In image processing, this approach has been used to build processing plans478

(Charlebois 1997; Ficet-Cauchard et al. 1999) or to find out convenient set of param-479

eters to configure a general processing chain (Perner et al. 2005; Frucci et al. 2008).480

The reasoning is based on the analysis of the problem formulation to try to find a481

similar case. The retrieved case is then adapted to the context of the current problem.482

If there is no similar case, then a new case has to be learned and stored in the database.483

Case-based reasoning does not require explicit representation of processing exper-484

tise. However, the critical point of this approach lies in the adaptation of cases to485

the particular context of the application that is of considerable importance in image486

processing regarding the high variability of images in a class.487

Chain Planning488

Unlike previous approaches which explicitly encode a set of processing chains, in489

chain planning the processing chains are built dynamically.490

Systems using linear planning are based onmodelling a type of expression that can491

be propagated along the processing chains. The reasoning is focused on the operations492

to be applied to the initial expression to build the expected final expression. The initial493

expression is the formulation provided by users in intensional or extensional form.494

In the latter form, expression is constructed by automatic extraction of features in495

sample images. The generation of chains can be combinatorial. In this case, each496

operator in the chain is modelled by a list of preconditions and a list of effects on497

the expression, as in the system Exti (Dejean and Dalle 1996). But, the generation498

of chains can also be achieved by production rules attached to nodes that select the499

next operators according to the current expression, as in systems Llve (Matsuyama500

1989) and Solution (Rost and Mnkel 1998).501

The planning approach creates chains from scratch for each application. However,502

it faces the difficulty to model the problem as an expression that can be propagated503

along processing chains and especially the difficulty of having to a priori estimate the504

impact of operations on the expression. To improve planning efficiency, this problem505

has also been addressed using a hierarchical planning. The Borg system (Clouard506

et al. 1999) used a blackboard to build plans using multiple levels of abstraction. The507

initial goal formulated by the user is gradually divided into more and more precise508

subtasks until they correspond to executable codes. Knowledge sources encode var-509

ious decomposition alternatives of a task to lower level subtasks. Figure10 presents510

an example of construction of such a plan.511

In all cases, the final application is the processing chain built operator by operator,512

which produce a standalone program. To limit the impact of choices made during the513

construction of chains, Draper et al. (1999), with theAdore system, propose to keep514

all the alternative chains in the program. This system then uses a Markov decision515

process to dynamically choose the best path in these chains during the execution of516

the solution, from features automatically extracted from the processed image.517
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Fig. 10 Excerpt from a hierarchical processing plan for the detection of agricultural fields in aerial
images (Clouard et al. 2010)

Incremental Result Construction518

Incremental construction of results proceeds by gradual and controlled evolution of519

the input image to the desired output image. This approach can be seen as dual of520

the previous approaches in the sense that the reasoning is focused on the analysis of521

data produced after application of processing. The image processing algorithms are522

completely split into a set of production rules (Nazif andLevine 1984) or independent523

rational agents (Boucher et al. 1998; Bovemkamp et al. 2004). In such an approach,524

there is no explicit strategy of generation of processing chains. The reasoning remains525

focused on the analysis of the current state of the image after application of the first526

processing in order to determine the next processing to be applied in the case of527

production rules or resolve data access conflicts in the case of multi-agent.528

The design of such systems requires a knowledge acquisition phase. Nevertheless,529

the decentralized control makes the acquisition of such knowledge easier, since it is530

not necessary for the knowledge engineer to explain the resolution strategies. How-531

ever, the overall resolution process remains complex to master because convergence532

towards a solution is only guaranteed by the action of rules or agents that have only533

a local vision of their effects. Each rule or agent is responsible for estimating the534

value of its contribution compared to the current state of the resolution. This limit535

often requires adding abstraction levels in the hierarchy of rules or rational agents to536

have a more global vision of the resolution.537
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3.3 Conclusion538

The challenge of the research on code supervision for automatic image processing539

and image analysis is to develop solutions that allow image consumers unskilled in540

image processing (e.g., geographers, biologists, librarians, special effect technicians)541

to design their own software alone. In shorter term, the goal is to build configurable542

systems that help vision engineers rapidly deploy dedicated applications without any543

programming activity.544

Today, the results of these works are exploited in recent research in semantic545

image indexing, content-based image search and video analysis. These problems are546

also addressed using statistical methods with spectacular results for face detection547

or object recognition for example. They operate from the extensional definition of548

image classes using comparison with learned sample images. But these statistical549

methods are insufficient in cases of complex scenes or problems other than detection.550

In such situations, artificial intelligence methods and techniques are an undeniable551

asset. They cover a wider variety of applications and moreover they better take into552

account of the user needs. In this context, statistical methods are integrated as regular553

codes that can be used in specific cases.554

However, the design of systems covering a wide range of applications with high555

efficiency remains a challenge. With this in mind, some current research work is556

directed towards the development of solutions based on human machine interaction,557

which emphasize collaboration to jointly converge towards building a suitable pro-558

cessing chain, each bringing its skills, the user’s knowledge of the problem and the559

system knowledge of image processing.560

4 Machine Learning for Robotics561

Most industrial robots of the last centurywere used in highly structured and controlled562

environments such as assembly lines. All day long, they were realizing highly repet-563

itive and specialized tasks without any room for uncertainty and away from human564

workers, mostly for security issues.565

In the early 21st century, a new generation of robots is now emerging, whose566

employment context is fundamentally different (see also chapter “Robotics and Arti-567

ficial Intelligence” in this volume). These so-called “personal” robots, whether they568

be food processors, playful companions or patient support, will have to perform569

extremely varied tasks in unknown changing environments, where uncertainty is570

omnipresent, and in direct contactwith their users,whowill not be experts in robotics.571

In this context, specifying in advance the behaviour of robots for any possible situa-572

tion and for any possible task is no longer possible. The only reasonable alternative is573

to equip these versatile robots with abilities to learn and adapt to their environment.574

While machine learning methods have been extensively developed in the last two575

decades, the robotic framework confronts these methods to specific constraints such576

420055_1_En_10_Chapter � TYPESET DISK LE � CP Disp.:18/5/2019 Pages: 28 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

20 I. Bloch et al.

as the limited duration of the experiments, the often prohibitive cost of failures, the577

need to operate in real time or the large number of high-dimensional problems to be578

solved.579

Therefore, no unifying theoretical framework has yet imposed itself to formalize580

the corresponding robot learning problems, and there are many attempts of varied581

natures to equip robots with learning abilities.582

Part of the work is based on different theoretical machine learning frameworks583

(see chapters “Statistical Computational Learning” and “Reinforcement Learning”584

of Volume 1, and “Designing Algorithms for Machine Learning and Data Mining”585

of Volume 2): supervised learning, reinforcement learning, inductive learning, etc.586

to build tools specifically adapted to the robotic constraints.587

Another part, which intersects significantly with the former, relies on understand-588

ing learning processes in biological systems to develop new methods inspired from589

these processes. This is the case of imitation learning, developmental robotics, evo-590

lutionary robotics, or various neuro-mimetic approaches to learning, for example.591

The intersection arises because these methods will eventually use machine learning592

tools designed within the first approach.593

4.1 Machine Learning Methods and Robotics594

Of all the approaches mentioned above, the one that provides the most obvious595

alternative for replacing direct programming of behaviour is imitation learning, also596

called learning by demonstration. This approach is relatively well developed and pro-597

ducedmany significant results in recent years, through quite differentmethodological598

approaches. Some researchers use motion capture tools to record the movement of599

humans trying to perform a task in a particular context, then make sure that the robot600

performs the same movement in the same context. This last point requires to solve601

a problem known as the “correspondence problem” when the geometry, kinematics602

and dynamics of the human and the robot are significantly different, which is usually603

the case, except for a few humanoid robots. To avoid solving this correspondence604

problem, another approach consists in driving the robot through a remote operation605

system to make it realize the required movement once, and then to build on the606

recorded movement to perform it again and again. However, those two approaches607

pose a widespread problem: the circumstances being never exactly the same, the608

recorded movement is never perfectly adequate and the robot must adapt to these609

variations. For various syntheses or particularly outstanding work in the context of610

learning by imitation, we refer the reader to the work by Atkeson et al. (1997),611

Schaal (1999), Ijspeert et al. (2002), Calinon (2009), Coates et al. (2008), Ratliff612

et al. (2009).613

Another approach that directly takes into consideration the need to generalize is to614

solve an “inverse reinforcement learning” (or inverse optimal control) problem. The615

idea is to consider a set of trajectories made by experts as optimal and extract the cost616

function that experts seem to have followed. Given the cost function, an optimization617
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algorithm can be used to generate the new robot movements that optimize the same618

cost function (Abbeel 2008).619

Learning by imitation is not enough to solve all the problems posed by the need for620

robots that adapt to their environment. Indeed, in the general context of use described621

above, it is not possible to show the robotwhat should be its behaviour in all situations622

it would be likely to encounter. To go further, it is necessary that the robot is able to623

adapt its behaviour to unexpected situations. For this, one must still provide the robot624

with a capacity to assess the quality of its behaviour in a given situation, which can be625

done through a cost function. Learning how to improve one’s behaviour by seeking626

to minimize a cost function (or maximize a performance function) is a problem that is627

formalized within the framework of reinforcement learning (Sutton and Barto 1998).628

The difficulty encountered in robotics to use reinforcement learning methods arises629

because these methods were originally developed in the problem solving context in630

which situations and actions are finite and limited, while in robotics problems are631

often continuous or very large. However, many recent algorithmic advances helped632

obtain increasingly significant results in this area (Stulp and Sigaud 2012).633

Moreover, the command used for complex robots often uses kinematics, velocity634

kinematics and dynamicsmodels of these robots, mainly for planning by determining635

the immediate response of the robot to a particular command. Identification is the636

activity of determining these models using a set of simple experiments that extract all637

relevant variables. The supervised learningmethods that approximate functions from638

elementary data provide an interesting alternative to traditional parametric identifi-639

cation, to the extent that a robotic model is a function that can be estimated from the640

sensors of the robot. On the one hand, these methods require no a priori assumption641

on the shape of themodels (Stulp and Sigaud 2015).Moreover, model learning can be642

performed during the robot operation, thus avoiding a tedious preliminary phase and,643

above all, allowing to immediately adapt the model in case of alteration of the robot644

or variation of the mechanical conditions of use. Though these supervised learning645

methods are still largely confined to learning robot models themselves (D’Souza646

et al. 2001; Salaun et al. 2010), they begin to tackle more original questions related647

to the interaction with a priori unknown objects (Vijayakumar et al. 2005), which648

falls within the more ambitious context of use that we described in the introduction649

to this section.650

Robot learning finds its most compelling application context in the interaction651

between a robot and a human (Najar et al. 2015). Indeed, this context prominently652

requires rapid adaptation to a changing context from the robot and provides the653

framework within which imitation learning comes most naturally. Imitation is also a654

kind of human-robot interaction, allowing to consider the latter area as more general655

than the former. There are also research works that do not fit in previous frameworks,656

such as research on the social acceptability of behaviour of robots (Kruse 2010) or657

human-robot verbal interaction in a cooperation framework (Dominey 2007).658

The human-robot interaction can be physical, when either of the protagonists659

exerts a force on the other. This is the case for example in the context of robotic660

assistance and rehabilitation, when it comes to helping patients with motor disor-661

ders (Saint-Bauzel et al. 2009). The implementation of learning technologies in this662
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context is a new trend (Pasqui et al. 2010). The interaction may also be simply com-663

municative, whether through the spoken word or through other nonverbal methods664

(Dominey and Warneken 2009). The interaction may finally be fully implicit, when665

the human and the robot adapt their behaviour to each other without any communi-666

cation, just by adjusting their behaviour to the behaviour observed in the other.667

4.2 Bio-inspired Learning and Robotics668

A second approach to learning in robotics is to attempt to replicate the learningmech-669

anisms found in living beings. The goal is to endow robots with adaptive properties670

similar to those of animals or humans, which is far from the case today. Such an671

approach is likely to improve the development of adaptive mechanisms for robots.672

Furthermore, and vice versa, this approach is likely to contribute to progress in673

understanding the adaptation mechanisms of living beings, through validation or674

invalidation by robotics experiments (Guillot and Meyer 2008).675

These bio-inspired approaches can take very different forms depending on the676

level at which the adaptation mechanisms are integrated. Indeed, living systems are677

characterized by a complex hierarchy of physiological and psychological processes678

at different scales, and adaptive mechanisms can be found at most of these levels, if679

not all.680

Broadly speaking, there are two main research lines:681

• the first finds its inspiration in psychological research about child development and682

is called “developmental robotics”. It is mainly concerned with works modelling683

the cognitive learning abilities of babies and young children (Lungarella et al.684

2003; Oudeyer et al. 2007; Quinton et al. 2008) and is particularly interested in685

solving the so-called “symbol grounding problem” that any artificial intelligence686

system is facing (Harnad 1990);687

• the second is rather inspired from neuroscience research and proposes “neuro-688

mimetic” approaches, which can be clustered into two main families. The first689

is interested in decomposing the brain into distinct functional areas and proposes690

models whose components mimic the functions of these different areas. For exam-691

ple, one model the learning capabilities of rodents by building a neuro-mimetic692

model of the rat basal ganglia, which are deep nuclei of the brainwhich are believed693

to play a role in the evaluation of our behaviour (Doya 2000; Lesaint et al. 2014).694

The second focuses instead on the elementary computational properties of neurons,695

again at different levels, depending on whether one looks at the average activity696

of the neuron over time or at its propensity to issue elementary pulses according697

to a specific dynamics.698

The central challenge that faces this general bio-inspired approach is due to the699

complex stack of integration levels. For a given adaptive phenomenon, it is some-700

times difficult to determine whether a unique level of integration can account for the701

phenomenon, or whether the mechanisms from several levels should systematically702
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be combined. In this context, the robot proves an invaluable tool for the advance703

of knowledge in living sciences by providing a demanding experimental validation704

framework in which different theories can be analysed or compared.705

4.3 Current Challenges706

The desire to endow robots with learning ability is doubtlessly not new, but the cor-707

responding research has substantially grown in recent years, with the emergence of708

many workshops dedicated to this topic in the main robotics conferences, the pub-709

lication of numerous special issues in journals, or the growing number of dedicated710

summer schools. The result of this rapid growth is a burgeoning development in711

which many approaches are being developed in parallel in sometimes very differ-712

ent directions, often attacking very different problems. It seems that in the more or713

less close future, all of these searches should be structured and that new models714

combining different mechanisms should emerge from this abundance. A very recent715

and major evolution in robot learning results from the emergence of deep learn-716

ing techniques (LeCun et al. 2015). The outstanding pattern recognition capabilities717

of these techniques and their focus on learning flexible representations from data718

opens new perspective on solving the symbol grounding problem in a developmental719

robotics perspective. But the methodological constraints of developmental robotics720

differ from those of standard pattern recognition challenges, thus the emergence of721

dedicated deep learning techniques is required with a potentially huge impact on722

robot learning (Sigaud and Droniou 2016).723

5 Conclusion724

In this chapter, far from being exhaustive, illustrations have shown convergence areas725

between artificial intelligence, computer vision, pattern recognition, learning and726

robotics. These convergences can be found in other domains, such as speech recog-727

nition and automatic natural language processing. Associating theories and methods728

from different domains is an ever growing approach, and leads to important develop-729

ments and original research works. In image understanding, high level approaches730

use more and more intensively knowledge representation methods and reasoning731

services. For instance, abduction and revision, integrating learning and uncertainty732

models, can be used for image or video understanding (Atif et al. 2013) (see also733

chapters “Knowledge Representation: Modalities, Conditionals and Nonmonotonic734

Reasoning”, “Reasoning with Ontologies”, “Belief Revision, Belief Merging and735

Information Fusion”, “Multicriteria Decision Making” and “Decision Under Uncer-736

tainty” ofVolume 1). In parallel to thesemodel and knowledge basedmethods, a large737

field of research is now based on learning (and in particular deep learning) meth-738

ods, with impressive results based on large training data sets (and without exploiting739
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knowledge) (LeCun et al. 2015; Vinyals et al. 2015) (see also chapters “Statistical740

Computational Learning” and “Reinforcement Learning” of Volume 1, and “Design-741

ingAlgorithms forMachine Learning andDataMining” of Volume 2).Man-machine742

interactions can also support new solutions, as mentioned for code supervision, but743

also for other domains, such as robotics. Finally, the multiplication of methods and744

models incite researchers to combine their advantages.745
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