Chapter 4

Modeling, Reconstruction and Tracking
for Face Recognition

With the development of biometric techniques, automatic identity control
systems have been invested in many places and facilities (e.g. airports and secure
premises) during the last years. To improve the traffic flow at these recognition
systems, it is necessary to minimize as much as possible the constraints imposed on
the user. To meet this objective, it is necessary to perform “on-the-fly” acquisitions,
without constraining the user to stop and stand in front of a sensor. In this chapter,
we therefore focus on the use of facial biometrics, and more specifically on issues
related to on-the-fly face acquisition. To enable the authentication within such
systems, we have to solve a number of issues related to the facial shape and texture
estimation. To address the theoretical aspects related to face acquisition and
reconstruction, we consider the following framework: a multiview acquisition
system is placed at the entrance of a room, a corridor, or a car park, for instance, and
the aim is to identify or authenticate the person observed through this device.

4.1. Background

The requirements of a biometric system are varied, for example its ease of use,
its speed of execution, its non-intrusiveness to users, its cost, and its reliability. The
first three points are essential for systems designed for the general public, where the
number of users is important and where these users are not specifically trained to
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use these systems (and should not have to be). For instance, in the case of
passengers at airports, many people will have to use a biometric system a limited
number of times during their lives. An effective way to increase the usability and
fluidity of this biometric system is to minimize as much as possible the constraints
on the user’s behavior during the acquisition process. As no specific action is
required from the user, there is no possible mistake from him/her during the
acquisition, thus reducing the required time.

The various available sources of biometric information (e.g. fingerprints, irises,
faces and veins) do not have the same requirements. The common fingerprints or
iris biometrics require a static position during the acquisition. They are also less
accepted by users than facial biometrics, which is more natural to humans. For face
acquisition, it is easy to imagine a protocol without contact or immobilization
constraint, making it a biometrics both faster and much more accepted. The user
does not experience the need to cooperate during the acquisition.

4.1.1. Applications of face recognition
In recent years, the growth of facial biometrics has been particularly important. It
is, indeed, used for many purposes:

— for entrance or secure access control (identification relative to a database of
authorized persons);

— for border control (authentication with passport);
— for right delivery (voter card, driving license, benefits, etc.);
— for police investigation.

In all these applications, facial biometrics can be used alone or in conjunction
with other biometrics.

4.1.2. On-the-fly authentication

Many face acquisition systems require a specific behavior from the user, such as
their immobilization in front of one or more cameras® This constraint significantly
slows down the process of identity checking.

The main reason for this constraint is that the majority of facial biometric
systems are based on comparisons between two views under the same pose to
establish a matching score. The recorded reference views of individuals are usually
frontal views (passport photo). The aim of the acquisition system is to provide a
similar frontal view to proceed to the comparison. For systems where the user must
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stop in front of the sensor, it is fairly easy to acquire this type of view directly.
However, if the acquisition is unconstrained, the face is seen under various poses.
The frontal view should then be generated from observations to make the
correspondence verification. This step is called “frontalization”.

Other methods of comparison are also possible, as in [VET 97], where the author
relaxes the conditions of pose similarity with generated views under new poses using
computer graphics methods. Two views can also be compared through the three-
dimensional (3D) shape and texture parameters that are estimated on each of them
[BLA 03b]. Finally, there are also methods based on video streams that analyze facial
dynamics to identify an individual, in addition to facial appearance [MAT 09].
However, in this chapter, we limit ourselves to a comparison between two frontal
views, which corresponds to the majority of scenarios involving a passport photo.

To obtain the frontal view of an observed face, the general idea is to first
estimate its 3D reconstruction (shape and texture) and then to generate the
corresponding frontal view. The pose, shape, texture, and lighting estimation, which
leads to the step of frontal view generation, is the core of this chapter. To evaluate
these parameters, many acquisition systems are available. We limit the scope of this
chapter to approaches that rely solely on video acquisitions made by common
cameras. Other methods also exist, but they require more complete (3D scanners,
depth sensors [ZOL 11]), or more intrusive (markers on the face [HUA 11] and
structured light projection [ZHA 04]) systems and are therefore not discussed here.

Even with a multicamera system, a wide variety of information is available to
reconstruct the 3D face: the system calibration and 3D models of faces, for example.
We review these types of information in section 4.2 before detailing the approaches
based on one or more views simultaneously acquired in sections 4.3 (geometric
approaches), 4.4 (model-based approaches), and 4.5 (hybrid approaches). Finally, in
section 4.6, we detail the approaches that integrate the time information using
specifically video inputs.

To provide an overall view of the process, here is an example of an on-the-fly
facial acquisition system (see Figure 4.1). No specific interaction from the user is
required in order to accelerate the whole process of authentication (or identification).
During his visit, the user’s head is tracked in the general 3D coordinate system
and the head model parameters are estimated from different available views
(Figure 4.2(a)) in order to match as best as possible the face of the tracked person.
At each moment, new observations are available and the face model of the
individual can be computed or updated. New views, particularly the frontal view
(Figure 4.2(b)), can then be generated in order to compare it with a database
(identification) or to a passport photo (authentication). The whole process is
summarized in Figure 4.2(c) and detailed in [MOE 10].
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Figure 4.1. On-the-fly facial authentication system
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Figure 4.2. Overall process of tracking and authentication (Source: [HER 11])

Modeling, Reconstruction and Tracking for Face Recognition 61

4.2. Types of available information

From a set of synchronized videos, much information can be used to reconstruct
a frontal view of the observed face. Here, we distinguish between two types of data:
the first is related to the properties of the acquisition system and the second is
related to the nature of the object to be reconstructed, i.e. the face.
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Figure 4.3. Available information to estimate the face from video acquisitions

4.2.1. Information related to the acquisition system

By using a multicamera system, it is possible to rely on a set of synchronized
views in order to match two-dimensional (2D) points and estimate the associated 3D
points. Furthermore, if the system calibration is known, the epipolar constraints will
allow one to improve the point matching between views. Many methods have been
developed to estimate the calibration parameters of a single (or a set of) camera(s),
with or without calibration pattern [HAR 04, ZHA 00]. Geometric constraints
induced by the calibration thus allow one to reconstruct the shape of an object.
Another solution, proposed in some algorithms, is to jointly estimate the calibration
of the system and the position of the matched points.



62  Signal and Image Processing for Biometrics

Furthermore, if the system is installed in a controlled environment (with known
light position and orientation), the shading of the object can be used to reconstruct it
by a technique known as “shape from shading” [ZHA 99]. However, it is not always
possible to control the light environment and to know the light source properties.
By adding some assumptions on the shape properties of the object, this method can
be applied to estimate its surface.

Finally, temporal information can also be used to reconstruct the observed face.
It is first beneficial to exploit the coherence of positions and poses estimated
between successive times in a tracking process. Moreover, the reconstruction can be
made from different views of the same video stream by optimizing jointly the shape
and the pose of the object, using correlation between successive views. This
technique, sometimes called structure from motion, has already been used for many
applications: urban environments reconstruction filmed from a vehicle, buildings
reconstruction [POL 04], objects observed by a mobile webcam [NEW 10], etc. We
describe at the end of this chapter how to use the video stream to consolidate facial
reconstruction.

4.2.2. Facial features

All the aforementioned techniques are based on the system’s properties, and they
consider no prior information on the type of the object to be reconstructed. We will
now focus on the 3D reconstruction of faces, integrating facial features into the
process. Depending on the type of features, the main approaches can be classified
into two categories: texture information or color, and head shape information.

In the first category, we can differentiate global descriptors, which specify the
properties of a face as a whole, and local descriptors, which locally describe some
facial parts or feature points (such as the MPEG-4 FACE norm [PAN 03]). Haar
wavelets and Gabor filters are two examples of descriptors commonly used to
characterize a face or one of its parts. These descriptors are used in detection
algorithms that identify the positions of faces or points of interest within an image.
Descriptors are usually built from positive and negative training sets to find
discriminative characteristics of the object to detect [VIO 04]. Another piece of
information often used to characterize the face is its skin color. In fact, color patterns
can be learned to describe the skin color, and associated face detectors can be used
for detection [HSU 98]. A review of face detection methods is given in [ZHA 10].
Finally, the reflectance, which is a more physical feature of the face, may also be
linked to color. This feature explains the light reflected by a point on the surface and
can be related to the perceived intensity in an image in this projected point.

The specific shape of the faces may also be characterized through distances
(between the feature points, for example), 2D or 3D point distributions, or surface
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meshes. The silhouettes, corresponding to the shape border once projected in the
image, also provide rich information to estimate the 3D shape of a face.

Both shape and texture of faces can be learned in order to build face models.
However, despite the genericity of the class of faces in terms of appearance and
shape, it should be noted that there is a large intraclass variability of individuals,
which allows one to differentiate an individual from another. It is this difference that
should be exploited in identification and authentication algorithms. Some models
include both generic aspects and individual properties of faces. These are obtained
through a learning process from which an average model (2D or 3D) and
deformations are extracted, associated with a probability of occurrence. They
characterize either the shape or the texture of the class of faces, or even both jointly.

Model-based approaches have several advantages. First, the use of prior
information on the shape and/or the texture constrains the space of solutions and
allows one to regularize the solution in case of noisy data. Furthermore, the
knowledge of an associated model of texture and shape provides rich information for
the estimation of the face. In fact, it provides information on areas of interest (feature
points, high-gradient areas, silhouette, etc.) and allows one to compute the similarity
with the observations made in these areas in order to optimize the parameters.

4.3. Geometric approaches for the reconstruction

Many algorithms have been developed to reconstruct an object from a set of
images. In the case of face reconstruction, those based on stereovision (or more
generally on multiview acquisitions) or a shape from shading are the most used.

4.3.1. Stereovision — Multiview

The first type of algorithms are based on a set of synchronized views of the
object from different angles and takes into account the stereovision constraints
coming from the system’s calibration. The principle is as follows: interest points
detected on each view are first matched (possibly constrained by the epipolar lines
resulting from the calibration data). We then deduce the associated 3D positions to
recover the 3D information of the object. The non-textured points are then
reconstructed by interpolation from the sparse set calculated in the previous step, or
by using the epipolar constraints again. A detailed description is given in [SEI 06],
where the authors categorize the different algorithms according to the initialization,
the methodology, and the prior information used.
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These methods impose several constraints. First, it is essential to have a
significant number of corresponding points on the entire surface of the face in order
to obtain a valid reconstruction at any point. Therefore, it is necessary to have views
taken from close angles to satisfy this condition; otherwise, a point is not necessarily
visible in different images. Moreover, the calibration parameters should be
accurately known to perform the correct triangulation of matching points. However,
some methods estimate the 3D shape of an object from a set of views acquired
when the extrinsic calibration parameters are not completely (or partially) known
[DAL 09, POL 04]. The procedure then follows structure from motion approach,
which is detailed in section 4.6.3.
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Figure 4.4. Multiview reconstruction proposed in [BRA 10]
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The use of multiview acquisitions for the reconstruction of faces has been
proposed several times [BRA 10, LIN 10, BEE 10], with various numbers of
views and qualities of sensors. With the rise of high-resolution cameras, the
reconstructions increasingly rely on high-quality multiview systems, approaching
the accuracy obtained with active acquisition methods (laser scanner, projected
light). Although they do not require markers, these systems are sometimes restrictive
if they involve multiple sensors and a special lighting system (Figure 4.4(a)
illustrates the system proposed in [BRA 10]). However, they lead to a very accurate
reconstruction of the observed face (Figure 4.4(b)). In fact, matching is performed
on mesoscopic details (skin pores, wrinkles) using the high resolution of images,
which provides a dense cloud of points (of the order of 8-10 million points for a
face) and a very accurate final mesh. Other reconstruction methods have also been
proposed from a single high-resolution binocular system [BEE 10], by exploiting the
fine details of the face as before. To reduce the system’s cost and the execution time,
some methods are based on lower resolution images, at the cost of a less accurate
quality reconstruction. Lin ef al. [LIN 10] use five views of the face with a highly
variable pose to reconstruct the face by using the bundle adjustment algorithm and
dynamic programming. Using information from silhouette and profile views permit
to improve the reconstruction, especially in the nose region, but still remains less
accurate than the previous methods.

4.3.2. Shape from shading

The shape from shading approach [ZHA 99] estimates the geometry of an object
from one or more of its views, using the shading. This information characterizes the
intensity variation observed in an image, between two points of a surface with
identical properties, or of a single point observed in two views with different
illumination conditions. As the observed intensity depends on the orientation of the
associated surface, shape information of the object may be inferred from shading.
This requires not only the model of the optical system, but also the knowledge of the
scene illumination and the reflectance properties of the object to be reconstructed. A
typical hypothesis for the shape from shading method is to consider the object as
Lambertian, meaning that the light reflected from a point on its surface is the same
in all directions. Other more realistic models, such as the Phong illumination model,
also exist. This takes into account not only the ambient component and the diffuse
reflectance (Lambertian model), but also the specular reflection, which characterizes
a preferential reflection direction. The intensity 7 of a point is then given by the sum
of three terms:

v
+ kylycos8 +kJ,(cosar) [4.1]
ambient component diffuse reflection specular reflection
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where I, and I, are, respectively, the intensities of the ambient and directional lights,
ka, ks and k, are the ambient, diffuse, and specular reflection coefficients,
respectively, @ is the angle between the normal at the considered point and the
direction of the directional light, & is the angle between the reflection and viewing
directions, and v is the brightness coefficient of the considered point. This model is
more realistic and therefore allows precise shape estimation. Some authors have
proposed to specifically measure the reflectance of the face [MAR 99] by learning
the bidirectional reflectance distribution function (BRDF), which models the light
reflection at a point on a surface.

These techniques require prior information, such as the position of the light
source, for example, when using a single image. Otherwise, the shape from shading
problem is ill-posed and it is not possible to directly infer a surface uniquely from
an image. Various ambiguities have been shown in the literature, such as crater
[PEN 89] and bas-relief [BEL 97]. The first is illustrated in Figure 4.5(a) and shows
the ambiguity that exists if the lighting was to be jointly estimated with the surface.
Here, the lighting can be perceived as coming from above (view of a crater) or from
the bottom (view of a volcano upside down): the surface and lighting cannot thus be
determined uniquely. Figure 4.5(b) shows an example of ambiguity known as
bas-relief, where the estimation of the topography of the face estimated by looking
at the central image is wrong. In fact, this is actually much more flattened (figure on
the right). Difterent 3D surfaces, combined with suitable light sources, can therefore
lead to the same image after projection.
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Figure 4.5. Multiview reconstruction proposed in [BRA 10]

Initially, the shape from shading method was devéloped to estimate the shape of
an object from multiple views from a fixed pose and different known illumination
conditions [WOO 89]. Developments have been proposed to relax these conditions,
and not to require the knowledge of the illumination parameters [BAS 07, WU 11].
Recently, a shape from shading method with no pose and light sources constraints
has been proposed, making it possible to use a large number of acquisitions to
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reconstruct the face [KEM 11b]. To reduce the influence of the shape changes in the
whole set of images (typically due to the expression variations), the notion of
canonical shape, which is defined as the shape locally similar to the largest possible
number of photographs, is introduced.

Unlike the stereovision technique that reconstructs an object by interpolation
from a sparse set of 3D points, the shape from shading technique estimates the
normal vector at each pixel of the image and thus provides more accurate
reconstructions. This is particularly the case for low textured surfaces, such as the
cheeks of the face, where very few points of interest are detected. Nevertheless, both
methods can turn out to be complementary by initializing a solution through
multiview stereovision before refining it via shape from shading technique [WU 11].

The advantages of the aforementioned techniques are that they do not use
assumptions on the object and thus permit us to reconstruct any object. But faces
exhibit very few textured areas, especially on the cheeks or on the forehead. For
some of these techniques, it is therefore difficult to infer the 3D shape. Thus, as the
shape and the texture of faces can be modeled, it is interesting to use such prior
information to compute the solution. Modeling the class of faces, on the one hand,
allows one to reduce the search space to a suitable subspace and, on the other hand,
provides a means to regularize the solution.

4.4. Model-based approaches for reconstruction
4.4.1. Modeling of the face

Many studies have been devoted to the modeling of faces in two and three
dimensions. We present here a brief overview of the best-known models, and
conclude with a more detailed description of the most commonly used 3D model,
namely the 3D morphable model (3DMM) [BLA 99].

The choice of the class of face modeling is constrained by the type of
information to be processed (images, depth sensor, inertial system, etc.) and by the
application for which the model is used. In fact, for human—computer interaction
or video-conference applications, important information is contained in facial
movements (expressions, words). A generic model, common to all individuals,
is therefore sufficient. However, it is necessary to associate a deformation model
related to facial movements, for instance, as for GRETA [PAS 01]. On the contrary,
when the facial reconstruction is part of a face recognition application, a deformable
model is required, where the deformation reflects the specificities of each individual.
Let us note that some models combine an identity model and an expression model
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[BLA 03a], thus providing greater flexibility, and require more efficient algorithms
to estimate all the identity and expression parameters.

4.4.1.1. 2D modeling of the face

The first face models that appeared in the 1990s were 2D representations.
Among others, these include:

Eigenfaces [TUR 91], which are the main vectors extracted from a principal
component analysis (PCA) on a database of faces in frontal view. The PCA aims at
capturing the variability of the training set and to encode it in a series of vectors in
their order of importance. This set of vectors, called eigenfaces, defines the basis on
which a face can be expressed as their linear combination.

Labeled graphs [WIS 97], which define the face as a labeled graph. Each node of
the graph is associated with a vector concatenating responses to a Gabor filter bank
around the corresponding point of the face. Each edge is labeled with the distance
between the two end points.

Active shape models [COO 95], which statistically characterize the distribution
of face shapes (in 2D). The adjustmient of the model (in terms of pose and
deformation) with an input image is done recursively, by matching the model with
the contours or points of interest of the observed image, followed by an update of
the pose and shape parameters. _

Active appearance models (AAM) [EDW 98], which consider the texture in
addition to the statistical shape model. The estimation of the model parameters is
done by minimizing the difference between the observed texture in the input image
and that generated from the estimated shape and texture.

Most algorithms that estimate the parameters of one of these models, given an
image, require a frontal or near-frontal view. Otherwise, these models cannot be
fitted to the observed face.

4.4.1.2. 3D modeling of the face

Given the characteristics of the acquisition system presented in section 4.1.2, it is
necessary to manage the images of faces under non-frontal poses. In fact, due to the
camera configuration (for instance, on the doorposts, or in a corner of a room), the
pose under which the face is perceived can vary considerably. To address this
problem, it is common to work with a 3D face model. Thus, the joint estimation
of the pose and the model allows one to proceed to frontalization, as defined in
Section 4.1.2. In addition, the use of a 3D model is a solution to self-occlusion and
shadow issues, if the light sources are integrated into the parameters to be estimated.
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A simple 3D face model called Candide was proposed in 1987 and consists of a
mesh characterizing the frontal part of the head [RYD 87]. This mesh has been
modified to match the MPEG#4 standard and action units have then been added to
characterize expressions (Candide-3 model [AHL 01]). However, this model does
not characterize the intraclass variability of faces (in terms of identity), resulting
in the construction of other models, such as the 3DMM. The seminal paper on
3DMM [BLA 99] proposed by Blanz et al. is the source of numerous works
on 3D modeling of the face. The main contribution of this paper is the introduction
of a statistical model of the face, in terms of shape and texture, from a set of M
3D acquisitions of faces, densely aligned. Each face is described by its shape
S={X. 1, Z), ... , (Xy, Ya Zy)} that consists of N 3D points, and by its texture
T = {(R), G\, BY), ... , (Ry, Gy, By)}. From M faces {(S.T)),i € {l, ..., M}} from
which the mean (§,7T) is removed, the PCA is performed independently on the shape
and on the texture, leading to the covariance matrices Csand Cr. The principal axes
of the shape and texture deformation are, respectively, characterized by the
eigenvectors s;and t;. A face (S,T) resulting from this modeling is described by:

§=8+Y as, T=T+> Bt [4.2]

where a = (a, ... , tty) is a real-valued vector distributed with a probability:

.— M-1

a.
~ i i B 43
p(a) = exp 5 M e [4.3]

where oy ; are the eigenvalues of the shape covariance matrix Cs. The probability of
the vector of texture coefficients f= (£, ... , Sur1) 1s expressed similarly. Figure 4.6
shows the influence of the variation of shape parameters & on the overall shape of
the face for a given texture. Each face is generated with the same texture, and the
projection is applied with the same calibration parameters.

There are two main benefits to define the face by the 3DMM:

— The number of unknowns to be estimated in order to characterize the shape and
the texture is greatly reduced. In fact, instead of independently defining thousands of
3D points and their associated color, the PCA reduces the definition of texture and
shape to a smaller set of parameters, which measure the eigenvectors.

— The definition of a new face as a combination of eigenvectors selected
following the PCA uses a strong prior knowledge derived from the training set of
faces. Thus, this knowledge allows one to create consistent faces because of their
fidelity to the model.
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A point to be evaluated with a model built from a training set is its ability to
characterize the face of any individual. It may, indeed, not be perfectly reconstructed
with the eigenvectors derived from the PCA. Therefore, in this case, we search the
parameters {(a;, £), i =1, ..., M—1} such that the distance of the considered face to
the face space V defined by the 3DMM is minimum (according to the distance to be
defined). The solution is thus the projection of the real face onto V.

Figure 4.6. Variation of the projection of a face for different
shape parameters, with given pose and texture

An intermediate between the active appearance model and the 3DMM was
proposed by Xiao er al. [XIA 04] to characterize faces. However, this model, which
characterizes as many shapes as the 3DMM, does not handle the problems of
occlusions (since the 3D information is not explicit). Moreover, it is less densely
defined than the 3DMM, and can therefore be restrictive for face recognition
applications. However, the advantage of this model is its speed of pose and
deformation adjustment, given an image, which is similar to that of a conventional
AAM, and much larger than the estimation methods of the 3DMM that we will
now review.

4.4.2. Estimation of the model parameters
In this section, we describe different methods proposed to estimate the

parameters {(a;, £), i =1, ... , M—1} (equation [4.2]) of a face observed in one or
several images.
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4.4.2.1. Joint shape and texture estimation

Different criteria can be used to estimate the 3D shape of the face parametrized
by the coefficients ¢; (equation [4.2]), as well as the associated texture. In [BLA 99],
a method is proposed for jointly estimating the face parameters (a, f) and
the illumination parameters of the scene as well as the calibration parameters
(concatenated in the vector p for clarity). This process is performed by minimizing
the overall energy E that consists of a data-fidelity term £, and a regularization term
E . The first is expressed by:

m\uM

fo_umﬁ.ﬁu.v\vI..Nmmbm.ﬁu.u\uh«uhu._qv H T__.n:

where (x, y) characterizes the position of a pixel, J,,s(x, y) is its value in the input
image, and /I..(x, y, a, B p) is the one in the generated image, given the current
values of the parameters. The regularization term Ej, includes the assumption of
the normal distribution of the shape and texture parameters:

m,snM Ly [4.5]

The minimization of the energy E = E; + E), through stochastic gradient descent
is proposed in [BLA 99] in order to be robust to local minima and to increase
the execution speed of the algorithm. Romdhani et a/. [ROM 02] proposed an
iterative method for parameter estimation, by exploiting the linearity of the
equations when the non-estimated variables are fixed. The method relies on the
computation of the optical flow between the synthesized image with the current head
estimation and the input image. This algorithm requires knowing the direction of
light and the approximate pose to initialize the optimization algorithm. It yields
results similar to those of [BLA 99], but with a running time divided by five.
However, it does not take into account the shading to estimate the shape, unlike the
stochastic gradient. The inverse compositional image alignment method proposed in
[ROM 03] follows an adjustment method of the face initially proposed in 2D for
AAM in [BAK 01] and is based on the inverse projection of the shape model. To
increase the convergence radius of the above methods, Romdhani ef a/. [ROM 05]
proposed to increase the number of likelihood criteria when aligning the model to
the input image. Thus, the risk of falling into local minima during the optimization
procedure is reduced, while increasing the quality of the estimated model. In
addition to the data-fidelity term, the prior shape, and the texture information, the
authors take into account the position of specific face edges and specular reflections
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in the image. As before, this procedure offers a compromise between the fidelity to
the observations (which may be noisy or contain incorrect data as wrong feature
point detections) and the prior model. In addition, the direction of the light is no
longer required as an input, and is also estimated by the algorithm. The additional
criteria proposed in the latter algorithm impose some preprocessing steps (edge
extraction, generation of distance maps) on the images that are sometimes noisy, and
require an accurate weighting of the criteria in their combination.

4.4.2.2. Shape parameter estimation and texture extraction

It is possible to limit the face reconstruction to the geometric component of the
3DMM. In fact, since the final aim is to validate the identity of a person, it is
important to have a texture as accurate as possible. Instead of deriving it from a
learning set, it can be extracted directly from the observations once the pose and
shape estimation is performed. Given the variability of individual textures (e.g. skin
color and presence of scars), a very large database would be required to ensure that
any sample of the population is similar enough to at least one solution in the space
defined by the 3DMM. Furthermore, as fewer parameters need to be determined, the
computation time for their estimates is reduced. In this section, we therefore focus
on algorithms in which only the shape of the model is estimated, with the possibility
of extracting the texture from observations in a second step.

[

By eliminating the texture, it is possible to use less complex criteria than those
described in section 4.4.2.1. For instance, it is possible to derive the parameters of a
3D model (for example, the 3DMM) from a set of 2D points detected on the images.
The method therefore consists in solving the inverse problem of determining the
pose and the parameters ¢;, i = 1, ..., M—1, such that the facial feature points of the

= M-1
model S=85 +M

positions.

a;S; have projections as close as possible to the detected

i=l

By using the statistical knowledge of the model, it is possible to establish a cost
function composed of two terms [BLA 04, FAG 08]:

— A data-fidelity term, which corresponds to the distance between the 3D point
projections, given the estimated model and the detected points.

— A regularization term, derived from the constguction of the 3DMM, namely
the Mahalanobis norm of the vector of the deformation coefficients (to be
compared to equation [4.5]). The latter is weighted by a factor 7, which tunes the
relative importance of prior information with respect to the data fidelity, as
illustrated in Figure 4.7.
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Figure 4.7. Variation of the reconstruction based
on the regularization coefficient n (Source: [BLA 04])

Thus, the learned model is used to regularize the deformations induced by
imprecise detections. In addition to the detected points, it is also possible to add
information such as directions tangential to the contours of the face (Figure 4.8).

However, the proposed energy is not robust to outlier detections, which are taken
into account in the projection error by using the Euclidean norm. Solutions have
been developed to handle detection errors in a better way, by minimizing the
constraints of data fidelity. In [BRE 10], for instance, after a few iterations, the
energy to be minimized no longer takes into account the 2D distance between
the projected points of the model and the detections, but relies on a matching score
(through ZNCC, zero-normalized cross correlation) of templates around these
points. The more the reconstructed view corresponds to the input image, the better
the matching scores and, therefore, the estimated parameters. Thus, the model is not
directly adjusted to the detected points but seeks for a compromise between the
overall configuration of points of interest and the reconstruction error.
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Figure 4.8. Annotation of the input image and estimation
of the associated model (Source: [BLA 04])

It should be noted that even when points are correctly detected, the feature point
positions vary only slightly for faces sampled from the 3DMM. In fact, facial
regions with high shape variance are not necessarily located near the main points of
the face, and it is, therefore, difficult to capture the deformations through the unique
information of feature points. The addition of other criteria, such as the proximity of
some edges of the model (lips, eyes) and projected silhouettes with the gradients
detected in the image, improves the parameter estimation, and simultaneously
increases the complexity and the run time of the algorithm.

)
A fully automatic method for generating a frontal view from any input image is

proposed in [AST 11]. Instead of using the shape part of the 3DMM, the authors
used several appearance models, called view active appearance models (VAAM),
for different pose intervals. The most appropriate active models are adjusted to the
observations, and the one minimizing the residual shape and texture error is kept. An
accurate pose estimation is then evaluated for this model with the estimated
parameters by support vector machine regression. Finally, the texture of the input
image is extracted using an average 3D shape model before generating the
corresponding frontal view. The specific shape of each face is not used for the
frontalization; the authors refer, indeed, to an average model for this step. Errors
can, therefore, exist during the texture extraction when the observed face shape is
too different from the average model. However, the time saving is significant
compared to a method adjusting to a complete 3D model. Some examples of frontal
views generated by this method are shown in Figure 4.9.
-

Once the pose and the shape parameters are estimated with the methods
described here, the texture is extracted, given the 3D shape and a projection model.
The whole model (shape and texture) is then used to generate the frontal view. With
these methods based on shape adjustment only, the illumination is not considered,
and the texture is, therefore, not corrected in case of shadows or specular reflections.
Therefore, we have to control the light environment in the acquisition area to
minimize its effects. In addition, the extracted texture can be invalid due to 3D
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accessories such as glasses. In fact, they are considered to be directly placed against
the face during the texture extraction, while they should be spatially modeled in
order to separately extract the texture of the glasses on the one hand, and that of the
face on the other hand. Otherwise, by changing the pose to get the frontal view, the
glass texture will be reprojected onto incorrect areas. One possible solution is to
detect the presence of such objects and remove them in the input images (through
inpainting algorithms, for example) in order to extract the texture of the face only.

Figure 4.9. Some examples of faces in frontal view generated from view active
appearance models [AST 11]

One drawback of the model-based approaches is, by construction, their
dependence on the training set. Specific attention should be paid to the samples used
for the learning step, which should cover all the specificities of faces (e.g. beards
and glasses) as much as possible. For example, it is difficult to reconstruct a face
with specific scars if this specificity is not present in the training set. Methods that
do not rely on a model (section 4.3) are able to reconstruct any facial shapes or
accessories worn by the individual, such as glasses, a hat, and a scarf, as they are not
constrained by prior information. This avoids the problem of inconsistent texture
mapping on the face in the case of direct texture extraction.
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4.5. Hybrid approaches

The methods described previously (based on the acquisition system properties on
the one hand and model-based approaches on the other hand) can be used
simultaneously. The problem to be solved thus contains more constraints and input
information, which help to solve ambiguities. However, given the amount of
information to consider (or estimate), the associated functions are more complex,
generally leading to a higher resolution time.

A first possible fusion is to combine the stereovision and the use of an prior face
model. Given a calibrated system, the shape estimation can be done through the
silhouette information extracted in each view [JIN 03, LEE 03], combined in 3D.
The advantage of the silhouette feature is its ease of extraction in various poses, not
to mention that it is important information in estimating the shape parameters of a
face. With multiview acquisitions, the calibration also allows one to compute the 3D
positions of feature points such as the eyes and the mouth and to infer the 3D pose
as well as the scale of the face. The shape model can then be deformed using points
matched between different views [IVA 07]. Finally, the mono-view estimation
method of shape and texture presented in [ROM 03] has been extended to the
multiview case [AMB 07]. A stereoscopic consistency criterion is integrated into the
cost function and the optimization aims at estimating not only the model parameters
but also the camera calibration parameters (which do not thus require to be known in
contrast to previous methods). From multiple cameras, the depth information of the
face is preserved, in contrast to the case of optimization of an image with
orthographic projection. The use of multiple views also enables one to solve existing
occultation problems when using a unique image and results in more accurate and

complete reconstructions (Figure 4.10).
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Figure 4.10. Input images, reconstruction associated with a multiview method,
true shape, and reconstruction using only the frontal view. Faces at the bottom
of the reconstructions indicate the associated error: the darker the area, the
higher the error (Source: [AMB 07])
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Methods combining the shape from shading approach and face models have also
been proposed recently. As in [ROM 05], the Levenberg-Macquardt optimization
method is used, but the energy to be optimized integrates the constraints derived from
the Blinn—Phong reflectance model. The shape parameters of the 3DMM as well as the
albedo of the surface can thus be jointly estimated [PAT 09]. To overcome the
limitations of a shape model, Kemelmacher-Shlizerman and Basri [KEM 11a] use an
average model to estimate the pose and light sources initially. It is then deformed to
cope with the observations of a single image, by optimizing the depth of the model
points. This method can be advantageous because it does not require learning a
deformable shape model, which involves the dense mapping of many 3D acquisitions.
Moreover, it helps to reconstruct shapes that are not present in the model.

The main advantage of the methods presented in this section lies in the joint use of
prior information on the class of objects to be reconstructed, namely the faces, and of
photometric and geometric information related to the system. The prior assumptions
allow fast initialization, while non-model-based methods allow shape and texture
reconstruction with a higher accuracy than with the constraints of a model.

4.6. Integration of the time aspect

In sections 4.3-4.5, facial reconstruction is performed from one or more images
acquired simultaneously. However, more and more systems now include video
sensors, such as the authentication system presented earlier in this chapter
(Figure 4.1). It is interesting to exploit the time information to guide the pose
estimation (section 4.6.1), and then to multiply the matching scores (section 4.6.2)
or even to increase the quality of the head estimation by using frames over the whole
sequence (section 4.6.3).

4.6.1. Face Tracking

Before estimating the shape and the texture of a face, we should first determine
(at least approximately) its position, orientation, and, according to the algorithms,
detect some feature points. In fact, most of the algorithms mentioned above are
based on these points, and the reconstruction quality depends on the number of
detections and their accuracy. In an unconstrained environment, the face is not
always seen frontally, which makes the face and its feature point detections a
difficult task. Frequent problems are inaccurate points or outliers and non-detections
or outliers, or to non-detections. Furthermore, the use of detectors over the entire
image is a costly operation, especially if a specific detector is used for each point. If
video streams are available, it is interesting to integrate time filtering to guide the
face and point detections.
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During the last 20 vears, many methods have been proposed to track heads
in video sequences. Head tracking can be divided into several cases: 2D position
{and possibly orientation) tracking using a single camera or 3D position tracking
using one T more cameras. An overview of pose estimation methods is proposed in
[MUR 09], dealing with pose estimation on a single image and in video streams.
[ix this section, we particularly focus on tracking-based methods, which benefit from
the pose history as images arrive recursively.

Several approaches are based on optical flow to recursively estimate the pose of
the face, but they are generally constrained by the assumption of constant brightness
and require a high frame rate. These methods can be combined with the use of
features from an average head model 1o perform the tracking and minimize these
conditions [MAL 0], Other methods rely on the information provided by face
[YAN 06] or feature point [COM 03] detectors to evaluate the pose [ZHU 04].
However, when the object to be tracked presents large appearance changes (in our
application, the face pose changes due to its position variation with respect to the
sensors), the leaming of robust face or point detectors gets difficult. It is then
preferable to use approaches that do not rely on detection information.

The Kalman filter [KAL 60], the extended Kalman filter, and the particle filter
[DOU 00] are different versions of the Bavesian theory applied to filtering
problems. The Kalman filter recursively estimates a state X, at time! 7 (for example
the position of the object of interest in the image 1) and the associated error in the
form of a covariance matrix (), given the current observations v, and the values X,.,
and C.; computed at the previous time (7—7). The Kalman filter relies on Gaussian
and hinearity assumptions on the functions and noise mvoived in the process. The
particle filter minimizes these conditions based on the approximation of the
probability density of the state X; by a set of particles, each of them representing a
hypothesis of the state. Each particle is associated with a weight that characterizes
its censistency with observations, and is updated at cach new frame. Works based on
the particle filtering technique to track the face pose mainly differ by the criteria
used to compute the particle likelihood. Conventionally, a color criterion is used to
quantify it [PER 02], which is restrictive in the case of illumination and/or pose
variations. because the face appearance changes a lot in these cases. In [OKA 03],
the particles are estimated from local liketihoods around some feature points, which
increases the robustness to pose variations. Kobayashi er al. [KOB 067 proposed an
original criterion of likelihood by incorporating wehk classifiers {based on Haar
ilter responses) merged by Adaboost into the particle filter, To be robust to pose
variations, classifiers can be learned for different intervais of orientation. Thus, the
choice of the classifier provides information on the range of the head pose:
nevertheless, it does not estimate it accurately. Ba and Odobez proposed to merge
the tracking and the pose estimation process [BA 04] in order to estimate both the
position and orientation accurately. The particles have a so-called mixed state,
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characterized by the 2D position of the face in the image on the one hand, and by its
orientation ow.. .muw other hand. To evaluate the particle likelihood, a prior learning
stage s performed in order to characterize the face responses to Gaussian and Gabor
filters for different poses. For a given particle, the observed response in the image is
compared io the expected response given iis state to evaluate its likel:hood. By
simuitaneously performing the tracking and the pose estimation process, the number
of particles to be used to ensure a robust tracking increases exponentially due to the
higher size of the search space. The computation time associated with the filtering
mﬂmwu is therefore more important, and it simultaneously provides an estimate of the
position and orientation of the face and offers rebustness o pose changes.

Another way o increase the robustness to Hlumination and pose changss without
a 3D model is updating the appearance features of the object to be wacked [ROS 08,
OKA 03]. Nevertheless, by adapting the descriptors fo the most recent observations,
the update methods potentiaily suffer from the drift problem, ie. the insertion of
errcneous object features into the appearance model. This bias leads to the
accamuiation of errors during the tracking and can eventually lead to the Jost of the
object. To limit this effect, constraints can be imposed on the model update, for
exampie, by controiling the difference between old and new features [KIM 08].

Obiect tracking under variable poses can also be improved with an explicit 3D
model, thus benefiting from the appearance of the object under any pose. This
knowledge can be integrated into the particle filter approach, where the hikelihood
is calculated by comparing the observations with the views that are generated by
image synthesis given the particle states [HER 11, BRO 12]. Besides particle
filtering methods, optimization algorithms like Gauss—Newton can also be based on
a 3D model to perform the tracking, by opumizing the pose parameters explaining
the projection of the model on the observed image {MUN 09].

The tracking processes detailed in this section can be considered as a preliminary
step fo shape and texture estimation algorithms. In fact. most of the model-fitting
methods require a pose and/or feature point positions as an initialization. The face
tracking output provides the first information, which can be used o limit the search
regions of point detectors, reducing the processing time for a frame. Besides, the
pose fiitering allows one to verify the time coherence of successive positions and to
detect inconsistent pose values in case of algorithm failure.

4.0.2. Static approach from video streams

When video sitreams are available rather than a single tmage to recognize a
person, the first option is to apply the reconstriction processes presented above 10
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each frame. Thus, there is not only one single comparison that is performed, but also
as many as available frames {and therefore frontal views). Even if occlusions are
termnporarily present, or even if the face is badly estimated at a given frame, others
will potentially be valid and therefore usable. To optimize the run time of this
method, we must define rules to filter out the bad frames and establish a decision
strategy, given all the scores obtained by the matching step between the reference
photograph and the reconstructed fronial views.

The frame selection fo be processed in order to estimate the face model can be
performed through different criteria. The detector confidence, the face resolution, or
its pose are commonly used for this purpose [SAT 00, VIL 10]. In addition fo these
criteria estimated on each image, it is also possible to take into account their time
variation befween two frames to improve the quality definition. Al these criteria
should then be merged to define the frame selection process. Besides the usual
fusion rules like average, product, and minimum/maximum selection, other methods
have alsc been proposed, such as the use of support vector machines, k-nearest
neighbors, and the fusion by maximizing the area under the receiver operating
characteristics (ROC) curve, which provide the best results according io the
comparative study presenied in [VIL 101

Once the frame selection, the face reconstruction, and the fronzal view generation
are completed, a recognition result for the sequence should be established by fusing
the different matching scores. To extend the standard methods of image comparisen
to video sequences (or a subset of their frames), a distance should be defined
between the set of query images (database or passport photo) on the one hand and the
video stream on the cother hand. One possible definition is the smallest distance
computed over all possible pairs (established, for example, in the space of eigenfaces
[SAT 00]). In the particular case of the identification (where an individual must be
selected from a given list), specific criteria can be used to weigh the results obtained
on a frame, namely:

- A distance to the model, which characterizes the disiance to the nearest
individual class. This aims at eliminating the detected faces with a pose or an
illumination not represented in the classes.

- A distance to the second closest class to verify the validity of the classification.
This criterion is based on the fact that if a class has been selected, it should obtain
much befrer marching scores than the second best class.

By integrating these various criteriza into the score fusion process, the
classification results are both beiter than those obtained independently on each
frame and those computed through the sum of all scores [STA G7].
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The sirategies presented in this section exploit the biometric information
available iniithe whole sequence, but consider the reconstruction process
independently on each frame. Depending on the number of cameras, on the head
pose, and on the algorithms, the facial reconstruction associated with a frame is
neither always complete (in case of self-occlusions) nor always precise {noise on the
images and insufficient features of the face). The purpose of the next section is to
simuitaneousty exploit the different frames of a sequence to improve the quality of
the reconstruction.

4.6.3. Time consolidation from video streams

As noted before, the problem of face reconstruction can be ili-posed according to
the features used io conduct the pose alignment and the face parameter estimation.
The use of multiple views first allows one to disambiguate a point depth derived
from its projection in case of a single image. Moreover, as the pose of the face varies
over the sequence, occluded regions become visible, thus allowing a compiete
estimation of the shape and/or the texture. Let us now describe some methods based
on the whole video sequences to reinforce the reconstruction.

We can first mention the 2D consclidation methods, which do not require a 3D
model. Hu ef o/ {HU 09] proposed the incremental reconstruction of the frontal
view of a face by accumulating the regions corresponding o visible areas at each
time. A distortion is applied to the observations to align the texiures extracted with
an average frontal view model. In this way, the areas observed during the sequence
lead to a more compiete face reconstruction than with a single frame. The advantage
of such methods is their speed and independence of complex face models.
Nevertheless, the greater the pose angles, the harder it becomes to find the similarity
parameters of the deformation.

The use of 3D moedels provides a greater robusiness 10 pose variations observed
in the video streams. A 3D shape model can be estimated from a set of frames in a
video, using the sithouette information [SAI 07]. detected feature peints {FAG 08],
or salient points matched between frames of the video [FID 07]. The pose in each
frame can be obtained using a specific marker on the face {IAS 07] or can be
estimated by a method known as structure from motion, based on a set of matched
points of the face, possibly constrained by a generic model [FID 071 As in the case
of some hybrid methods presented I section 4.3, this model can then be abandoned
for an accurate reproduction of facial shapes. The structure from metion method
typically relies on a matching of specific points between different views, which
requires small pose variation between frames to guaraniee the visibility of points.
The ase of an explicit face model creates an intermediaie space to link all the
observations, and it is then no longer necessary 1o match the detections between the
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views, the latter being attached to the model. To estimate accurately the observed
shape, it is necessary to have a significant number of points (46 in [FAG 08]) over
the entire face. Otherwise, multiple sets of parameters can verify the matching,
without a dense validation of the shape similarity (which is similar to some issues
identified in section 4.4.2.2). However, this method, which has the advantage of
being fast, requires a large number of input feature points that are not always
possible to detect due to the head pose in the images. As before, a compromise
between the criteria used (related to the reconstruction accuracy) and the execution
speed is thus to be found in order to meet the accuracy and speed requirements
imposed by the system. A probabilistic approach can also be considered to estimate
the shape parameters from a video sequence, for example using the particle filter
[HER 12].

An additional difficulty of video sequences compared to the case of
synchronized multiview acquisition comes from the variations of the facial
appearance between two time instants (e.g. wink and mouth pinch). Some methods
use an expression model (like Candide) to estimate the facial deformations and
derive the expressions [DOR 05, OKA 035, MUN 09]. Of course, in order to impose
as few constraints as possible on the user, an optimal system should estimate the
shape while being robust enough to expression variations. Methods have already
been proposed for this purpose [AMB 08], but do not directly exploit images (or
video stream). A model of both shape and expression is optimized'using geometric
information derived from a 3D scanner, and does not exploit the intensity of images
nor a time consistency on the expressions. The potential of such methods applied on
2D images and video sequences are a current topic of research.

4.7. Conclusion

Throughout this chapter, we discussed different methods for 3D face
reconstruction. Due to the application constraints of a biometric system, we focused
on passive methods, relying solely on video acquisitions. The reconstruction is then
used to generate the associated frontal view for face recognition purposes. Generic
methods such as stereovision and shape from shading can be used, but the
integration of prior assumptions on head shapes and appearances can improve
the quality of the reconstructions, especially within uncontrolled environments
(non-frontal poses, varied illumination conditions). Some authors have proposed
benefitting from the advantages of both types of methods, and offer very convincing
results by mixing a 3D model and stereovision, for example. Finally, by using video,
it is possible, on the one hand, to apply time constraints to the estimated poses in
order to speed up the initialization and, on the other hand, to benefit from several
face estimates, or to improve the face reconstruction. This is especially useful when
only one camera is available, to improve the 3D shape estimation quality and to
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complete the texture during the acquisition. When video streams are used, we should
take into account the existence of facial dynamics, related to expressions, movement
of the eyes, etc. The robustness of facial reconstruction to expressions in a single
image or in a video stream is currently a very active area of research.
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Chapter 5

3D Face Recognition

5.1. Intreduction

Three-dimensional (3D) face recognition allows us to deal with some problems
related to the pose and lighting conditions. In fact, the 3D information, once
obtained through appropriate sensors, is invariant to changes in lighting and pose
conditions. Nevertheless, the facial deformation caused by expressions has been one
of the chalienges that researchers and manufacturers are trving to address. In
addition, 3D face recognition requires the 3D acquisition of faces. Not only
commercial 3D sensors, but also the solutions proposed by the research community
have limitations. These include the range of the sensors, that is 1-2 m, the controlled
lighting conditions, the precision, and ultimately the duration of the acquisition.

There are currently two major paradigms of face recognition using the 3D
modality: the symmetric recognition where the data in the gallery and the probe data
are similar, specifically 3D or 3D + texture, and the asymmetric recognition that
uses heterogeneous data from the gallery and from the probe. Thus, the gallery
consists of 3D or textured 3D data while the probe data are only texture images or
vice versa. The advantage of the latter paradigm is that the use of 3D information is
limited. It is also referred to as recognition assisted by 3D,

The structure of this chapter follows to a certain extent the order of steps of

the 3D recognition, from the acquisition to the recognition. First, we present the
current databases of 3D face recognition. Second, we discuss the 3D acquisition
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