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In this paper, we propose a novel approach for exploiting structural relations to track multiple objects 

that may undergo long-term occlusion and abrupt motion. We use a model-free approach that relies 

only on annotations given in the first frame of the video to track all the objects online, i.e. without 

knowledge from future frames. We initialize a probabilistic Attributed Relational Graph (ARG) from the 

first frame, which is incrementally updated along the video. Instead of using the structural information 

only to evaluate the scene, the proposed approach considers it to generate new tracking hypotheses. In 

this way, our method is capable of generating relevant object candidates that are used to improve or 

recover the track of lost objects. The proposed method is evaluated on several videos of table tennis, 

volleyball, and on the ACASVA dataset. The results show that our approach is very robust, flexible and 

able to outperform other state-of-the-art methods in sports videos that present structural patterns. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Object tracking is a relevant field with several important appli-

ations, including surveillance, autonomous navigation, and activity

nalysis. However, tracking several objects simultaneously is often

 very challenging task. Most multi-object trackers first track each

bject separately by learning an individual appearance model and

hen consider all the results globally to improve or correct indi-

idual mistakes. However, especially in sports videos, the use of

ppearance models proves to be insufficient because usually many

bjects (or players) have very similar appearance due to the uni-

orm they wear. This often causes tracking loss after situations of

cclusion between players of the same team. Another difficulty is

hat most trackers rely on the constraint that temporal changes are

mooth, i.e. the position of an object does not change significantly

n a short period of time. Yet, this is not a reasonable assump-

ion for most sports videos, because they are usually obtained from

roadcast television, and thus they are edited and present several

amera cuts, i.e. when the scene changes suddenly due to a cam-

ra cut off, or change of point of view. Camera cuts often cause

roblems of abrupt motion, which is regarded as a sudden change

n position, speed or direction of the target. 
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In long-term tracking, the objects are subject to situations of

ull occlusion and abrupt motion, which may lead to tracking fail-

res. Therefore, the tracker must be able to recover the target af-

er such events. In this paper, we explore the use of spatial rela-

ions between objects to recover or correct online tracking. Online

racking, as opposed to batch methods, only uses past information

o predict the next state. We argue that, in some kinds of videos

here the scene represents a situation that usually follows a com-

on spatial pattern, it is possible to recover tracking by learning

ome structural properties. Fig. 1 shows an example of a table ten-

is video illustrating a situation where tracking is lost after two

layers intersect each other. Although the interaction is brief, this

lready causes one of the trackers to misjudge its correct target

nd start to track the other player instead. We solve this kind of

roblem by exploiting the spatial properties of the scene, such as

he distance and angle between two objects. 

We shall refer to videos that present discernible spatial patterns

s structured videos. It is assumed that scenes (or frames) of these

ideos contain elements that provide a kind of stable spatial struc-

ure. A good example is sports videos. Sports rely on a set of rules

hat usually constrain the involved objects to follow a set of pat-

erns. These patterns often present some spatial relationships that

ay be exploited. For example, the rules may enforce that the ob-

ects must be restricted to a certain area, or that they always keep

 certain distance among them. 

Structural relations are utilized by using graphs to encode

he spatial configuration of the scene. In this paper, color-based
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Fig. 1. An example of a multi-object tracking situation. Most single object trackers are able to successfully track the targets when their appearance is clear (a). However, 

when overlap occurs (b), they are not able to solve the ambiguity problem in appearance and the tracking is lost (c). We propose recovering tracking after such events by 

using structural spatial information encoded in graphs (d). 
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particle filter was chosen as the single object tracker due to its

simplicity and good results demonstrated in previous studies.

However, other trackers could also be employed instead to benefit

from the added structural information. This makes the proposed

framework very flexible and able to be used to potentially improve

the results of any single object tracker applied in multi-objects

problems. As shall be explained throughout this text, the graphs

are utilized to extract structural information from the scene, to

generate candidate object positions, and then to evaluate the

tracking state at each frame. With this approach, it is possible to

improve the overall result by recovering tracking after situations

of overlapping between objects with similar appearance or when

abrupt motion happens. 

The use of structural information for recovering tracking is a

topic that has not been much explored in the literature before.

Indeed, several of the current state-of-the-art methods based on

tracking by detection do use structural information at a different

level, for evaluating the tracking state and solving the data asso-

ciation problem between the frames. However, the detections are

usually carried out by off-the-shelf detectors that do not consider

scene information. In this sense, one main contribution of this pa-

per is to introduce a new approach that exploits the learned struc-

tural model to guide the detection. This approach allows tracking

the objects even after challenging events such as long-term oc-

clusions or abrupt motion. The proposed framework is tested on

sports videos obtained from Youtube and also from the ACASVA

( De Campos et al., 2011 ) dataset, which present real challeng-

ing conditions such as changing of lighting, mutual occlusion, and

camera cuts. 

The main contributions of this paper are the following: (1) to

introduce a structural approach for improving tracking by generat-

ing new object candidates, and (2) to formalize tracking as a flexi-

ble graph optimization problem that can be adapted to other situ-

ations where structural patterns exist. 

This paper extends our previous work (Morimitsu et al., 2015) .

The main novelties of this study are: firstly, the graph model is

trained and updated online, without the need of a training dataset,

making the method much easier to use in different applications.

Secondly, the graph matching function does not rely on heuris-

tics for occlusion and change of tracker anymore. This informa-

tion is incorporated directly into the scoring function, thus allow-

ing us to formalize the data association as a graph optimization

problem. Thirdly, additional results on more cluttered and chal-

lenging videos of volleyball matches are included. They are also

analyzed more thoroughly using the widely adopted CLEAR-MOT

metrics ( Bernardin and Stiefelhagen, 2008 ). 

This paper is organized as follows. In Section 2 we present a

review of some relevant previous works and how they contributed

to the development of our method. In Section 3 we detail the par-

ticle filter tracking approach and how it is applied in our problem.

In Section 4 the complete framework for tracking multiple objects

using graphs is explained. In Section 5 the experimental results ob-

tained are exposed. We compare the obtained results with our ap-

proach with other state-of-the-art methods from the literature. In

a  
ection 6 we discuss the main conclusions of this work as well as

uggestions for future research. 

. Related work 

Visual tracking in sports has been receiving great attention over

he years and it has been tackled in many different ways. Due to

ts simplicity and robustness to deal with more complex models,

ethods based on particle filters became popular ( Kristan et al.,

009; Okuma et al., 2004; Xing et al., 2011 ). Another significant

pproach relies on the fact that often the background is static and,

herefore, tracking may be performed by using background sub-

raction methods ( Figueroa et al., 2006 ). Other authors explore the

se of multiple cameras to obtain more reliable results ( Morais

t al., 2014 ). 

Recently, the tracking-by-detection framework has become the

tandard method for tracking multiple objects ( Choi, 2015; Milan

t al., 2014; Solera et al., 2015; Zhang et al., 2015 ). This approach

onsists in obtaining noisy detections at each frame and then con-

ecting them into longer temporal tracks. For this, a data associa-

ion problem must be solved between all the candidates in order

o create stable tracks for each object. The most important part is

ormulating the association function so that the problem can be

olved efficiently, while creating good tracks. Liu et al. (2013) have

esigned an association function specific for tracking players in

eam matches. The tracks are associated by assuming a motion

odel that depends on the game context at the moment. By ex-

loiting local and global properties of the scene, such as relative

ccupancy or whether one player is chasing another, the authors

how that the method is able to successfully track the players dur-

ng a basketball match. One important challenge in multi-object

racking consists in keeping the correct identities of each object.

hitrit et al. (2014) demonstrate on several sports videos that it

s possible to keep the correct identity of the players by relying

n appearance cues that are collected sparsely along time. This

s done by modeling the problem as flows expressed by Directed

cyclic Graphs, which is solved using linear programming. Lu et al.

2013) show that it is possible to keep correct identities even when

sing a simple data association strategy. On the other hand, this

pproach makes use of a Conditional Random Field framework,

hich assumes both that the tracks for the whole video are avail-

ble, and that external data is available to train the model param-

ters. Our proposed method may be interpreted as a tracking-by-

etection framework, but instead of using an object detector to

enerate candidates, we rely on the structural properties encoded

n the graph. The identification of each player is handled implic-

tly, by the graphs. Although this choice is not always optimal, it is

fficient, and it only relies on data obtained from the past frames

f the video itself. 

One challenging condition frequently found in sports scenes is

cclusion. Many previous works focused on modeling it explic-

tly to handle these difficult situations ( Tang et al., 2014; Xiang

t al., 2015 ). Zhang et al. (2013) tackle this issue in sports by using

 structured sparse model for each person. This approach builds
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n the robustness of sparse models by assuming that the occlu-

ion model is usually not sparse, but rather a structured connected

rea. This allows using better models which are able to ignore fea-

ures from large occlusion areas, e.g. one player occluding another

ne. In a related topic, Soomro et al. (2015) propose using struc-

ural properties encoded in graphs to associate tracks when the

ideos of football games are cut, which causes occlusion of players

s well as abrupt motion. This problem is formulated as a graph

atching between different frames. In order to solve the ambiguity

roblem for the association, the authors use knowledge about the

reviously learned team formation. Therefore, the model requires

ome additional external information in order to successfully re-

over tracking. 

The use of structural information for multi-object tracking has

lso been incorporated into the SPOT tracker ( Zhang and van der

aaten, 2014 ). The authors use a model-free approach that learns

he appearance and structural relations between the tracked ob-

ects online. In the first frame, manual annotations are provided

nd used to initially train a Histogram of Oriented Gradients (HOG)

etector ( Dalal and Triggs, 2005 ) for finding the object in the next

rames, i.e. their approach is also based on tracking by detection.

he structural relations are also learned from the first frame by

raining a structured Support Vector Machine (SVM). The models

re then updated while the tracking is being performed, using a

radient descent approach. The candidate graphs are evaluated us-

ng the information obtained from the HOG detectors as well as

he distances between any two objects. 

Although similar, their proposal differs from the one presented

n this paper in the following aspects: (1) their structural model

nly computes the difference between the observed distance and

n ideal value that comes from the online training. Our model

onsiders both distance and angle information obtained from a

ore general probability density function. (2) Although they use

he structure to improve tracking and to deal with occlusion, it is

ot used to guide the detection process, which could lead to im-

roved performance by restricting the search space. Our approach,

nspired by Grabner et al. (2010) , uses some objects as supports for

he structural model to generate candidates of where the target is

ikely to be found after tracking loss. (3) Their method of tracking

y detection does not consider motion models, while we rely on

article filters. 

Another important issue that must be dealt with during track-

ng is abrupt motion. Perhaps, the simplest way to deal with it is

y generating some additional target location hypotheses around

he previous location to try to cover a broader region, as explored

y Zhang et al. (2012) . Another proposal is to solve the same prob-

em using spatial position information for finding better candidates

 Kwon and Lee, 2008; Zhou and Lu, 2010 ). This is done by dividing

he image into several smaller regions and using the information

btained from the density of states of each one to find new lo-

ations. More recently, Su et al. (2014) proposed relying on visual

aliency information to guide the tracking and restore the target.

t is important to note that, although tracking-by-detection meth-

ds should be able to deal with abrupt motion, most of them do

ot behave well in this situation because their association func-

ion usually enforces the temporal stability constraint. As previ-

usly mentioned, we use a different approach that relies on the

tructural relations between the objects to find the most likely new

ocations of a lost target. 

. Tracking objects with particle filters 

In this section, the standard method of tracking with particle

lters is briefly summarized. A classical filtering problem operates

ver a Hidden Markov Model ( Fink, 2008 ). Let X and O be the

ets of states and observations, respectively. Let x t ∈ X be a hidden
tate at instant t and o t ∈ O an observation emitted by x t . It is as-

umed that the model is a Markov process of first order and x t is

onditionally independent of the joint of previous states and ob-

ervations. The filtering problem consists in estimating recursively

he posterior distribution P ( x t | o 1: t ) , where o 1: t denotes the set of

bservations from instant 1 to instant t . 

Except if the system presents some properties such as Gaussian

istributions and linear models, the distribution cannot be com-

uted analytically. When the system is more complex, then the re-

ult can only be approximated using, for example, a particle filter. 

Let x i t be a hypothetical realization of the state x t and δ
x i t 

( x t )

e the Dirac delta function centered at x i t . A particle filter solves

he filtering problem by approximating the posterior probability

 ( x t | o 1: t ) by a weighted sum of N P Dirac masses: 

 ( x t | o 1: t ) = 

N P ∑ 

i =1 

π i 
t δx i t 

( x t ) , (1)

here each x i t is called a particle with associated weight π i 
t . 

This work employs particle filter using the ConDensation algo-

ithm, which uses factored sampling ( Isard and Blake, 1998 ) to up-

ate the particles. The particles are then propagated according to a

roposal function x i t ∼ q ( x t | x i 0: t−1 
, o 1: t ) , which is usually assumed

o be the dynamics model P ( x t | x t−1 ) , yielding x i t ∼ P ( x t | x t−1 ) . 

The propagation phase involves two steps: drift and diffusion.

rift is a deterministic step, which consists in applying the motion

ynamics for each particle. Diffusion, on the other hand, is random

nd it is used to include noise in the model. The new state of a

article i can then be expressed as: 

 

i 
t = D x i t−1 + u , (2) 

here D is the motion dynamics and u is the noise vector. 

Finally, the weights of the particles are updated according to

he new observations o t and, if the proposal function is the dy-

amics model, the weight update is simply: 

i 
t ∝ π i 

t−1 P ( o t | x i t ) . (3)

The final estimated state of a cloud of particles P may be com-

uted using several heuristics, but the most widely used is by com-

uting the weighted average: 

(P ) = x t = 

N P ∑ 

i =1 

π i 
t x 

i 
t (4) 

In this work, we are also interested in evaluating the overall

uality of a cloud P . We propose doing this by computing a confi-

ence score based on the non-normalized weights of the particles:

(P ) = 1 − exp 

( 

−
N P ∑ 

i =1 

π i 
t−1 P ( o t | x i t ) 

) 

. (5) 

his increasing function ensures that the score is close to 1 when

he sum of the weights is high. 

.1. State and dynamics models 

The objects to be tracked are represented by rectangular bound-

ng boxes. Each box is parameterized by its centroid and two mea-

ures: height and width. It is assumed that the variation in scale

s not significant. Therefore, the state of each particle is given by a

olumn vector x i t = (x i t , y 
i 
t ) 

T , which represents one candidate cen-

roid. The motion model is a random walk, yielding: 

 

i 
t = x i t−1 + u (6) 
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Fig. 2. An overview of the proposed framework. 
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where u = (u x , u y ) 
T is a noise vector whose terms follow a Gaus-

sian distribution N (0 , ˆ σu ) . In this work, we adopt an adaptive vari-

ance ˆ σu that is computed by weighting the fixed variance σ u ac-

cording to the quality of the particles. The weight is obtained by:

λ = α

(
1 −

∑ N P 
i =1 

P ( o t | x i t ) 
β

)
, (7)

where α is a given spreading factor that controls the impact of the

weight on the real variance and β is an upper bound for the max-

imum weight of the particles. We can choose β = N P or another

suitable value according to the data. However, it is not interesting

to remove the variance altogether, thus we set a lower bound τλ,

yielding the final weight: 

ˆ λ = max { λ, τλ} . (8)

Finally, the adaptive variance is computed as: 

ˆ σu = 

ˆ λσu . (9)

More complex states and motion models could be used. For ex-

ample, the state could also include additional information such as

the velocity, acceleration, orientation, scale and so on. The great-

est problem when considering more information is that each ad-

ditional parameter increases the search space in one dimension.

Since the amount of particles required to track multiple objects in-

creases fast, the smallest number of particles that produced good

results was chosen. 

3.2. Color histogram-based tracking 

The objects are tracked using color histograms ( Pérez et al.,

2002 ). The method works by using color information obtained

from the HSV color space. This color model is interesting because

it separates the chromatic information (Hue and Saturation) from

the shading (Value). However, the authors point out that the chro-

matic information is only reliable when both the Saturation and

the Value are not too low. Therefore, first an H HS histogram with

N H H 
N H S 

bins is populated using only information obtained from

pixels whose Saturation and Value are above some given thresh-

olds of 0.1 and 0.2, respectively. The remaining pixels are not dis-

carded because their information can be useful when dealing with

images which are mostly black and white, and they are used to

populate an H V histogram that is concatenated to the H HS one

built before. The resulting histogram is composed of N H H 
N H S 

+ N H V 
bins. Following the aforementioned paper, the variables are set as

N H H 
= N H S 

= N H V 
= 10 . 

Each histogram corresponds to one observation o 
j 
t for object j

at instant t for the particle filter. Section 4.4.2 presents more de-

tails about how the histograms are compared in order to track each

object. 

4. Multi-object tracking based on structural information 

In this section, the proposed tracking framework is explained.

Fig. 2 shows a flowchart of the process. First, a video with annota-

tions for the first frame is provided as input. Then, the annotations
re used to learn the initial structural graph model, which is em-

loyed to generate some additional object candidates for recover-

ng tracking in case of loss. The candidates are evaluated according

o the model and the final result is used to update the model be-

ore processing the next frame. 

Tracking is carried out by evaluating two Attributed Relational

raphs (ARGs): a model graph G 

M and a scene graph G 

S . The def-

nition of both ARGs is presented in Section 4.1 . For the tracking

tep, the position of each of the N O objects can be either manually

nnotated in the first frame of the video or obtained automatically

sing detectors. In this work, we adopt the former option. First, the

odel graph G 

M of the image structure is learned using the anno-

ations from the first frame and then updated online at each frame

f the video ( Section 4.2 ). Multiple hypotheses about the state of

ach object i are kept by using a set of trackers 

 

t 
i = { (P i j , w 

i 
j ) | j = 1 , ..., n 

t 
i } , (10)

here P i 
j 

is the j -th tracker of object i , w 

i 
j 

is a temporal confidence

core and n t 
i 

represents the number of trackers for object i at in-

tant t . For obtaining the set of trackers, G 

M is used to generate

andidates on the most likely locations ( Section 4.3 ). Each can-

idate yields a new pair (P i 
k 
, w 

i 
k 

= 0) which is then added to P 

t 
i 
.

ll trackers in P 

t 
i 

are then updated by applying their respective

tate dynamics. After including the candidates in the set, the global

racking result is obtained by optimizing a matching function be-

ween the model and the scene graphs ( Section 4.4 ). Having found

he best trackers, the temporal scores of all of the candidates are

pdated ( Section 4.5 ). The next sections detail each step. 

.1. Attributed Relational Graph (ARG) 

An ARG is a tuple 

 = (V, E, A V , A E ) , (11)

here V = { v i | i = 1 , ..., N O } represents a set of vertices (or nodes),

 = { e i j = (v i , v j ) | i, j ∈ { 1 , ..., N O }} is a set of directed edges (or

rcs), i.e. e ij � = e ji , and A V and A E are sets of attributes of vertices

nd edges, respectively. 

Each frame of the video (also referred to as scene) is repre-

ented by one or more ARGs. The vertices of G are the tracked

bjects, while the edges connect objects whose relations will be

nalyzed. The desired relations are expressed using a binary adja-

ency matrix M A = (m i j ) where m i j = 1 if there is an edge from

 i to v j . Fig. 3 shows one possible scene graph generated from the

ollowing adjacency matrix: 

 A = 

⎛ 

⎜ ⎜ ⎝ 

0 1 0 0 1 

1 0 0 0 1 

0 0 0 1 1 

0 0 1 0 1 

1 1 1 1 0 

⎞ 

⎟ ⎟ ⎠ 

. (12)

Two different kinds of attributes are used: appearance and

tructural attributes. Appearance attributes are related to each ob-

ect and they are stored in A V . On the other hand, structural
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Fig. 3. An example of a scene graph. 
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Fig. 4. The structural attributes of the edges. 
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ttributes represent relations among objects and thus constitute

dge attributes in A E . 

.1.1. Model graph 

The model graph G 

M is an ARG, whose topology is obtained

y means of an adjacency matrix M A . The choice of the topology

epends on the problem, and it may be defined based on com-

on sense or expert knowledge. As a guideline, edges should be

dded: (1) between objects with similar appearance that tend to

ause inter-occlusion (in this way, the graph can be used to han-

le the ambiguity problem after occlusion), (2) between pairs of

bjects that present a clear positional relationship (thus allowing

he generation of good candidates to search in case of loss), and

3) to exploit the relation between moving objects and some ref-

rence (stable) object. The appearance attributes in A 

M 

V are com-

uted from annotations provided in the first frame of the video. In

ur experiments, the appearance is described by using color his-

ograms as presented by Pérez et al. (2002) . However, any other

ppearance descriptor could also be considered, like HOG ( Dalal

nd Triggs, 2005) or SIFT ( Lowe, 2004) , and the proposed method

an be applied directly. 

The initial set of attributes A 

M 

E of G 

M also comes from the struc-

ure observed from the annotations of the first frame. However,

hey are also constantly updated after every frame ( Section 4.2 ).

et δ be one of the structural attributes to be measured (e.g. the

istance between two objects). The structural attributes of the

odel graph consist of the probability density function (PDF) of

. Inspired by Cho et al. (2013) , the chosen set of attributes is 

(i, j) = { (θ (e i j ) , d(v i , v j )) } , (13)

nd the PDF is estimated by means of histograms H δ ( H θ or H d in

his case). The function θ ( e ij ) represents the clockwise angle be-

ween the horizontal axis and the vector 
−−→ v i v j , and d ( v i , v j ) is the

uclidean distance between the two vertices ( Fig. 4 ). In order to

btain more robustness, the distance is normalized by dividing it

y the width of the image. The PDFs are initialized from the an-

otations obtained from the first frame. For this, we assume that

hese annotations have the highest confidence value (equals to 1)

nd we use the convolutional kernels explained in Section 4.2 . 

Fig. 5 shows one example of a graph and the learned his-

ograms for each attribute. 

.1.2. Scene graph 

The scene graph has the same topology as the model graph,

nd it is built at each frame as follows. Each scene configuration

 is represented by a graph G 

S 
k 

(some examples of different graph
onfigurations for one scene can be viewed in Fig. 7 ). A vertex

 i ∈ V S of the scene graph G 

S 
k 

is associated with one cloud of par-

icles P i 
j 

for object i . Let us assume that the state of each object is

omposed of | X | ≥ 2 components (in this paper the state is com-

osed of exactly 2 components). Let r(P i 
j 
) = (x 

i, j 
1 

, x 
i, j 
2 

, ..., x 
i, j 
| X| ) rep-

esent the final vector state obtained from Eq. (4) for the particle

loud P i 
j 
. In our experiments, x 

i, j 
1 

and x 
i, j 
2 

represent the 2D coor-

inates of the object in the image space, and the position of v i is

iven by 

 P (P i j ) = (x i, j 
1 

, x i, j 
2 

) , (14)

.e. r P (P i 
j 
) is a truncated version of r(P i 

j 
) that only includes the spa-

ial coordinates. 

The edges are then built using the same matrix M A as in the

raining and in the model graph. However, recall that each object is

racked by a set of different trackers. Therefore, each scene may be

escribed by multiple graphs that have the same topology, which

epresent all the possible combinations of different trackers ( Fig. 7

isplays candidates that may be added to each tracker set). 

The set of structural attributes A 

S of G 

S is not composed of

DFs as in G 

M , but of single values for each measurement δ ex-

racted from the current frame (i.e. the observations of δ). The at-

ributes of the vertices are the associated pairs (P i 
j 
, w 

i 
j 
) . 

.2. Updating the model graph 

In the beginning, for each attribute histogram H δ , the range

ange (H ) = [ min , max ] and the number of bins bins ( H ) must be
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Fig. 5. An example of a model graph with the learned attributes. The red histograms represent the attributes of the vertices (color model), while the green ones represent 

the angles, and the blue ones represent the distances. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article). 
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specified. The tracking results are then used to update the model

at each frame. The structural measurements extracted from the

scene graph are used to cast a vote and update the model his-

tograms. However, in order to deal with uncertainty and create a

more general model, the measurements are first convolved as δ∗k C 
with a kernel k C that depends on the confidence of the tracking

result. The confidence is measured according to the likelihood of

the particle filter estimation ( Eq. 4 ) as P ( o i t | r(P i )) . 

The convolution kernel is chosen according to the confidence as

follows: 

k C = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

[0 . 3 , 0 . 4 , 0 . 3] if P ( o 

i 
t | r(P i )) > 0 . 7 , 

[0 . 15 , 0 . 2 , 0 . 3 , 0 . 2 , 0 . 15] if 0 . 3 < P ( o 

i 
t | r(P i )) ≤ 0 . 7 , 

[0 . 1 , 0 . 13 , 0 . 17 , 0 . 2 , 0 . 17 , 

0 . 13 , 0 . 1] otherwise. 

(15)

Therefore, less confident results are more spread throughout the

histogram range to reflect the uncertainty of the observations. 

4.3. Generating new candidates 

Besides for tracking evaluation, we propose using the structural

information of G 

M to generate new candidate positions for each

tracked object. This step is important to improve overall tracking,

particularly to recover the target after a tracking failure occurs. 

Since the attributes A 

M 

E are all relative to the origin of each arc

e ij , the position of v i must be known. Therefore, it is assumed that

the trackers for every object will not all fail at the same time. Good

candidates can be generated by selecting the positions given by the

best trackers as origins. The candidate generation is controlled by

using a matrix M C = (m i j ) , where m ij indicates that, if object i is

used as reference, then it generates m ij candidates for object j . 

Let a M 

e i j 
= { H θ (θ (e i j )) , H d (d(v i , v j )) } be the attributes of an edge

e ij from G 

M . Candidates k are generated for object j as 

( ̂  θk = θk + u θ , ˆ d k = d k + u d ) (16)

by simulating according to the distributions given by the his-

tograms θ k ∼ H θ ( θ ( e ij )) and d k ∼ H d ( d ( v i , v j )), where u θ ∼ N (0 , σθ )
nd u d ∼ N (0 , σd ) are Gaussian noises. Each candidate position is

hen obtained by 

(v i (x ) + 

ˆ d k cos ( ̂  θk ) , v i (y ) + 

ˆ d k sin ( ̂  θk )) . (17)

ig. 6 shows the candidates generated for each object. The candi-

ates are then used to generate new particle clouds P 
j 

k 
which are

nserted in the set P 

t 
j 
. The clouds are initialized by spreading the

articles according to a Gaussian distribution centered on the can-

idate position. 

In order to avoid generating graphs using unreliable sources,

he generated candidates are filtered according to two criteria.

irstly, we check whether a candidate significantly overlaps an-

ther older tracker. Therefore, if the overlap ratio is above a given

hreshold τO , the candidate is discarded. Secondly, we also com-

ute the appearance score (see Section 4.4.2 ) and remove candi-

ates whose score is below τ S . 

.4. Optimizing tracking using graphs 

In this section, the method used for choosing the best trackers

or each object is explained. Each tracker receives a score based on

 matching function according to its respective scene graph and

he model. Later, the best candidates are chosen by optimizing a

lobal function over all the objects. 

.4.1. Computing graph score 

The score of a scene graph G 

S is obtained by summing over the

emporal scores of all of its vertices: 

 (G 

S ) = 

N O ∑ 

i =1 

w 

i 
j G 
, (18)

here w 

i 
j G 

corresponds to the temporal weight of the candidate j

f object i that is used to create the graph G 

S . This score measures

he reliability of the associated tracker P i 
j G 

along time. This is done

y computing a weighted accumulation of instantaneous scores: 

(w 

i 
j ) 

t = ρT (w 

i 
j ) 

t−1 + f (i, G 

S , G 

M ) , (19)

G G 
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Fig. 6. An example of candidates generated for one scene. Rectangles of the same color indicate that they belong to the same object. 
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here t indicates the time, ρT is a given constant and f ( i, G 

S , G 

M ) is

he instantaneous score function for the vertex v S 
i 
, which is associ-

ted with ((P i 
j G 

) t , (w 

i 
j G 

) t ) . By doing so, trackers which consistently

erform well during longer periods of time have higher scores than

hose that are only eventually good (usually incorrect trackers). 

The instantaneous score is divided into four parts: 

f (i, G 

S , G 

M ) = ρA φA (i, G 

S ) + ρS φS (i, G 

S , G 

M ) 

− ρO φO (i, G 

S ) − (1 − ρF − ρS − ρO ) φC (i, G 

S ) , (20)

here ρA , ρS and ρO are given weighting factors such that ρF +
S + ρO ≤ 1 . The functions φA , φS , φO and φC are the appearance,

tructural, overlapping and changing score functions of v i , respec-

ively. Notice that the last two functions act as penalty terms and

hus, they decrease the score. These functions will be further ex-

lained in the following sections. 

.4.2. Appearance score 

The appearance score is actually the confidence of the particle

loud P i associated with object i (vertex v i ) as in Eq. (5) . Hence, it

s set to 

A (i, G 

S ) = ζ (P i ) . (21)

The confidence score depends on the weights of the particles,

hich are based on the likelihood P ( o t | x i t ) . The distribution is

omputed in the same way as in Erdem et al. (2012) , using the

hattacharyya distance d B : 

 ( o t | x i t ) = exp 

(
−d B (H 

M , H 

S ) 2 

2 σ 2 

)
, (22)

here H 

M and H 

S are histograms, normalized to sum to one, of the

odel and the scene, respectively and 

 B (H 

M , H 

S ) = 

√ 

1 −
∑ 

j 

√ 

H 

M ( j) H 

S ( j) , (23)

here H ( j ) is the j -th bin of histogram H . 

.4.3. Structural score 

Let m i be a vector representing the line i from the adja-

ency matrix M A , i.e. corresponding to object i . Let also θS 
i 

=
(H 

M 

θ
(θ S (e i j ))) 

N O 
j=1 

and d S 
i 

= (H 

M 

d 
(d S (v i , v j ))) 

N O 
j=1 

be the vectors of

he likelihoods of each structure measurement coming from the

cene according to the model histograms. The structure score is

omputed using the dot product: 

S (i, G 

S , G 

M ) = 

1 

2 ‖ m ‖ 1 

m i · θS 
i + m i · d 

S 
i , (24)
i 
here ‖ m i ‖ 1 is the L 1 norm of m i . In other words, this score cor-

esponds to the average of the attributes of the edges originating

rom v i . 

.4.4. Overlapping score 

The overlapping score is used to penalize configurations with

 high intersection between objects of similar appearance. This is

one to facilitate the recovery after one or more trackers with sim-

lar models lose the target in case of temporary occlusion. Let B 

i be

he set of pixels inside the bounding box of particle cloud P i and

 

i the color histogram of B 

i . The overlapping score is obtained by:

O (i, G 

S ) = 

N O ∑ 

j =1 , j � = i 

[
(1 − d B (H 

i , H 

j )) 
|B 

i ∩ B 

j | 
|B 

i | 
]
, (25)

here d B ( H 

i , H 

j ) is the Bhattacharyya distance defined in Eq. (23) . 

.4.5. Changing score 

This function is defined to penalize the change of trackers be-

ween consecutive frames. The reason is to reinforce the assump-

ion of smooth movement and, therefore, to keep the same tracker

or as long as possible. This score is obtained from a simple indica-

ive function that checks whether the tracker chosen in the last

rame is being used in the current frame: 

C (i, G 

S ) = 

{
0 if tracker j for object i from instant t −1 is kept, 
1 if a new candidate k replaces the old tracker j. 

(26) 

.4.6. Choosing the best scene graph 

The best trackers are selected by building the scene graphs G 

S 
k 

nd computing the scores explained before. Fig. 7 shows possible

raphs that can be generated from some given candidates. There-

ore, one option would be to build all possible graphs and to find

he one which maximizes the overall score for every tracker. How-

ver, this approach was not chosen because the number of graph

ombinations is usually very large and unfeasible to be processed

n real time. Instead, it was chosen an iteratively greedy approach

hat fixes the vertices for all objects except one and optimizes the

core for one object at a time. 

Let V S ∗ = { v (P i ∗) | i = 1 , . . . , N O } be the set of vertices with the

est scores found at a certain iteration step and whose graph score

s s (G 

S ∗) . The initialization procedure of this set will be discussed

ater. Assume that the optimization is being performed for object
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Fig. 7. Some examples of candidate graphs to be analyzed. 
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1 http://opencv.org/ . 
2 https://github.com/henriquem87/structured- graph- tracker . 
j and we are testing its l -th candidate. We fix the set of vertices

V S 
j,l 

= V S ∗ ∪ { v (P 
j 

l 
) } \ { v (P 

j 
∗ ) } and compute the score of the associ-

ated graph G 

S 
j,l 

. If s (G 

S 
j,l 

) > s (G 

S ∗) , then we change the set of best

vertices as V S ∗ = V S 
j,l 

. This step is repeated for one object at a time

and all of its candidates are tested. After all of the objects are eval-

uated, we repeat the process again until V S ∗ does not change during

one whole iteration or if the iteration limit τ I has been reached.

Since the score function is upper bounded, this procedure is guar-

anteed to converge if enough time is available. However, it does

not always find the global maximum, sometimes being stuck at

a local peak. In order to try to overcome this, we reinitialize the

optimization procedure N RI times and take the best results of all

runs. We also employ two different heuristics for choosing the ini-

tial vertices and the order of testing the objects. 

The first procedure is the score-guided optimization. For this

step, the initial set of vertices V S ∗ is chosen as the ones used in

the last frame. Let { (P i ∗, w 

i ∗) | i = 1 , . . . , N O } be the set of the best

trackers of each object, i.e. 

(P i ∗, w 

i 
∗) = arg max 

(P i 
j 
,w 

i 
j 
) ∈P t 

i 

w 

i 
j . (27)

A sequence is created by sorting w 

i ∗ in ascending order and pro-

cessing the objects i one by one according to this sequence. The

rationale is that, since all the other vertices will be fixed, it is bet-

ter to let the worst tracker vary first in order to have good refer-

ences for the resulting graph. The second heuristic is a completely

random run. In this case, both the initial set of vertices and the or-

der of testing objects are chosen randomly. The final set of vertices

is chosen by running the score-guided optimization once and re-

peating the random procedure N RI times to find the set of trackers

that yields the best global score. 

4.5. Updating trackers 

When running the graph optimization, temporal scores are

computed but not stored as the final scores of each tracker. The

reason is that, since they depend on the whole graph, they should

not be updated until the best graph G 

S ∗ has been found. Once the

graph is decided, the temporal scores of all candidates can be up-

dated by following the same greedy procedure as explained in

Section 4.4.6 using V S ∗ as the initial set of vertices. 

We also want to remove trackers whose scores are too low.

Therefore, whenever the temporal score of a tracker falls below a

threshold τ , the tracker is removed. The only exception is when
R 
 given object i has only one tracker in its set. In this case, the

racker is kept despite its score. 

. Experimental results 

The software was developed in Python with the OpenCV li-

rary 1 . As explained in Section 3.1 , each object is individually

racked using particle filters with color histograms as proposed in

érez et al. (2002) . In our experiments, we observed that the track-

ng speed was between 3 and 4 frames per second (FPS) on the

able tennis and badminton videos, and around 1.5 FPS on the vol-

eyball sequences, using a machine equipped with an Intel Core i5

rocessor and 8GB RAM. Notice that the current code is neither

arallelized nor utilizes the GPU. Therefore, there is still room for

ignificant improvement in the performance. Specifically, the par-

icle filter and graph evaluations would greatly benefit from par-

llelization, since all the instances could be processed simultane-

usly. The source code is publicly available for downloading and

esting 2 . 

.1. Evaluation metrics 

We use the widely adopted CLEAR-MOT metrics ( Bernardin and

tiefelhagen, 2008 ), whose most important results are the MOTP

nd MOTA. In this section, we will briefly explain each of them. 

MOTP is an acronym for Multiple Object Tracking Precision,

hile MOTA is the Accuracy. The former metric represents the ca-

acity of the tracker to produce results which are close to the

round truth, even if the identity of the objects are swapped. The

atter, on the other hand, measures how well the tracker is able to

ssign tracks to the correct object, without considering how close

t actually is from the correct position. 

Let d i t be the distance between the estimated result and the

round truth for object i at time t and c t the number of matches

ound, then we can compute: 

OT P = 

∑ 

i,t d 
i 
t ∑ 

t c t 
. (28)

n this paper, the distance d i t is actually the overlapping be-

ween the estimated bounding box and the ground truth. There-

ore, higher values of MOTP indicate better results. 

http://opencv.org/
https://github.com/henriquem87/structured-graph-tracker
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Fig. 8. Sample frames from the Youtube table tennis dataset. 
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3 Access to the dataset was provided as a courtesy by the original authors 

( De Campos et al., 2011 ). 
For the MOTA, let g t be the number of objects that exist at in-

tant t . Let also m t , fp t and mme t be the number of misses, false

ositives, and mismatches, respectively. Then, the metric can be

btained by: 

OT A = 1 −
∑ 

t (m t + f p t + mme t ) ∑ 

t g t 
. (29)

We shall call MOT General or MOTG , a metric that corresponds

o the average of MOTP and MOTA : 

 OT G = 

M OT P + M OT A 

2 

. (30)

We also evaluate the results using the following additional met-

ics obtained from CLEAR-MOT: 

• IDSW : number of ID switches, i.e. number of times the current

association contradicts the one from the previous frame; 
• TPrate : rate of true positives, i.e. total number of true positives

divided by �t g t ; 
• FPrate : rate of false positives. 

.2. Datasets 

The three datasets used for testing the tracking framework are

escribed below. The proposed method is designed for handling

ideos where some structural properties can be observed. Among

he many existing broadcast sports videos, we found out that

ports like volleyball, table tennis, and badminton exhibit a clear

tructure that could be exploited. These videos also present some

hallenging conditions, such as similar appearance, occlusion, and

apid motion, which may cause even state-of-the-art methods to

truggle. To the best of our knowledge, there is no public sports

ataset that presents the desired characteristics for evaluating this

ethod ( Dubuisson and Gonzales, 2016 ). Therefore, we decided to

ollect appropriate videos to verify if the proposed approach could

ontribute for handling tracking problems in this class. 

.2.1. Youtube table tennis 

This dataset is composed of 6 videos containing 6737 frames in

otal. All the videos are of doubles matches of competitive table

ennis collected from Youtube. Fig. 8 shows some sample frames

rom this dataset. The videos were edited to remove unrelated

cenes (e.g. preparation stage, crowd) and then manually anno-

ated with bounding boxes for ground truth. The videos are en-

oded at resolutions varying from 640 × 360 to 854 × 480 pixels

n each frame and at 30 FPS. 
.2.2. ACASVA 

We selected three videos from the ACASVA ( De Campos et al.,

011 ) dataset 3 of badminton doubles matches from the Olympic

ames in London 2012. As in the table tennis dataset, the videos

ere edited to remove parts that do not show the game itself and

nnotations were created manually to be used as ground truth. The

esulting videos were encoded at 1280 × 720 pixels per frame at

0 FPS and they contained 5766 frames. Fig. 9 displays some sam-

le frames from this dataset. 

.2.3. Youtube volleyball 

Following the same guidelines as before, videos of volleyball

atches were chosen and edited. This dataset is composed of 3

ideos recorded at 30 FPS at a resolution of 854 × 480, contain-

ng 5080 frames. The videos in this dataset do not contain cuts,

hich allows us to analyze the behavior of the tested trackers in

his configuration. Videos using two different camera angles were

ollected, and those captured from a side view present some fast

otion when the camera follows the ball from one side of the

ourt to the other. This dataset also contains a significantly greater

umber of players to be tracked (6 on each team). Fig. 10 displays

ome sample frames from this dataset. 

.3. Choosing the parameters 

We separated the Youtube table tennis videos into two sets, one

or parameter estimation and another for evaluation. The set for

arameter estimation was composed of one video containing 2461

rames. This video contained a longer table tennis match with all

he expected challenging situation including overlapping between

layers of the same team and camera cuts. 

We performed a test to find the best weights ρA , ρS and ρO for

he scoring function (Eq. 20) . Each configuration was evaluated five

imes and the presented results correspond to the average between

ll the observations. 

For the test, we tried all combinations of values in the in-

erval [0, 1] with an increment of 0.2, i.e. each parameter could

e 1 out of 6 values. Ignoring the invalid configurations (where

A + ρS + ρO > 1 ), this produces 56 possibilities. We evaluated all

f them with the MOTG metric and found out that the best config-

ration consisted of ρA = 0 . 4 , ρS = 0 and ρO = 0 . 6 with MOT G =
 . 61 . Besides finding the best parameters, we were also interested

n verifying how each parameter affected the results. In order to

o so, for each parameter value, we computed the average MOTG

f all configurations that used that parameter and evaluated how
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Fig. 9. Sample frames from the ACASVA badminton dataset. 

Fig. 10. Sample frames from the Youtube volleyball dataset. 

Fig. 11. MOTG according to graph parameter selection. Change tracker weight rep- 

resents (1 − ρA − ρS − ρO ) . 

 

 

 

 

 

 

 

 

 

Fig. 12. MOTA and MOTP according to the number of edges in M A . 
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the scored changed according to each one of them. Note that lower

values have more samples, since more valid combinations of the

remaining parameters exist. Fig. 11 shows the MOTG curves for

each parameter value. It is worth noting that the method perfor-

mance varies smoothly with the parameters, thus showing robust-

ness to small parametric changes. 

It is clear that the appearance is an important feature, show-

ing a direct relation to the score. The change tracker, on the other

hand, proved to hinder the performance and thus, should not be

used. The overlap term presents the best performance at near the
iddle of the interval, while the structural part does not seem to

ffect much the results. Although the structural score is not used

n the best configuration found for this test, some other configu-

ations which did employ structure also appeared near the top re-

ults. Besides, the chart in Fig. 11 shows that the use of structure

oes not affect negatively the overall scores, thus indicating that

he structure could be useful in some other applications. Although

ot used for evaluation in this test, the inclusion of structure to

enerate candidates for tracking significantly improves the results,

s it will be shown in the next section. 
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Fig. 13. Tracking results after occlusion. Each method is represented by a different color. Dark blue: Online Graph (ours), orange: PF, light gray: STRUCK, dark gray: SPOT, 

light blue: Offline Graph. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Parameters for the tracking framework. 

distance histogram range range (H d ) = [0, 1] 

angle histogram range range (H θ ) = [0, 2 π ] 

number of distance histogram bins bins (H d ) = 25 

number of angle histogram bins bins (H θ ) = 18 

number of particles per object N p = 50 

number of random optimization 

runs 

N RI = 10 

initial particle spread deviation σc = 10 

particle spreading factor α = 5 

maximum particle sum of weights β = 25 

appearance weight ρA = 0 . 4 

structure weight ρS = 0 

overlapping weight ρO = 0 . 6 

old temporal weight factor ρT = 0 . 8 

score threshold for removing 

candidates 

τS = 0 . 4 

score threshold for removing old 

trackers 

τR = 0 . 2 

overlap threshold for removing 

candidates 

τO = 0 . 25 

graph optimization iteration 

threshold 

τI = 10 

conv. kernel for confidence in (0.7, 

1.0] 

k C = [0 . 3 , 0 . 4 , 0 . 3] 

conv. kernel for confidence in (0.3, 

0.7] 

k C = [0 . 15 , 0 . 2 , 0 . 3 , 0 . 2 , 0 . 15] 

conv. kernel for confidence in [0.0, 

0.3] 

k C = 

[0 . 1 , 0 . 13 , 0 . 17 , 0 . 2 , 0 . 17 , 0 . 13 , 0 . 1] 
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We also experimented with varying the old temporal weight

actor ρT , the score threshold for removing candidates τ S and the

core threshold for removing old trackers τ R . However, the results

id not show any clear behavior, as demonstrated by the previ-
us parameters. Therefore, we just chose one of the top performing

onfigurations. 

Another parameter that is worth investigating is the graph

opology represented by the adjacency matrix M A . We conducted

ome tests by varying the number of edges of the graph to see

ow it affected the performance. As the graph in the table tennis

ideo is composed of 5 vertices, we tested all configurations un-

il reaching a complete graph (10 edges). For each configuration

ith k edges, we randomly generated 5 adjacency matrices to be

ested. Notice that the suppression of edges in M A affects the in-

ormation available for generating the candidates using the matrix

 C . In order to decrease the impact of the candidates generation

n the evaluation of the topology, we defined M C = (m i j = 5 , if i � =
j, otherwise 0) , i.e. each vertex generates 5 candidates for all the

thers. All the other parameters were fixed according to the tests

eported above. The result is presented in Fig. 12 . 

The results evidence that using more edges has a clear impact

n the accuracy, which significantly increases until around 4

dges. One point worth of note is that the use of additional edges

oes not negatively impact the results. Based on these results, and

n knowledge about the configuration of the game, we chose to

se the same adjacency matrix defined in Eq. (12 ), where the first

our lines and columns represent the players, while the last one

epresents the net or the table (from now on referred to as middle

ine), on the badminton and table tennis videos. The adjacency

atrix for the volleyball videos followed a similar design, where

he net was connected to every player and the players of the same

eam were fully connected. This matrix considers the relations

etween players of the same team and all the players and the

iddle line. The relationship with the middle line is important

ecause the players should be close and on opposite sides of it
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Fig. 14. Tracking results after a camera cut. Each method is represented by a different color. Dark blue: Online Graph (ours), orange: PF, light gray: STRUCK, dark gray: SPOT, 

light blue: Offline Graph. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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during the game. On the other hand, exploiting the relationships

between players of the same team helps us to handle temporary

occlusions. For the remaining experiments, the candidates matrix

M C was chosen to use the middle line as a reference to generate

10 candidates for each player. 

Table 1 summarizes all the parameters chosen for the evalua-

tion. The same values were used for all the experiments, indepen-

dently of the dataset. 

5.4. Experimental setup 

We tested our approach on all the datasets previously pre-

sented. For the table tennis dataset, the video used for estimat-

ing the parameters was not included in this evaluation step. The

task in these videos was to track all the players and the middle

line. We purposely track using only the torso of the players in or-

der to create more appearance ambiguity and check whether the

graph model can deal with this situation. All the videos are cap-

tured from a single camera, which moves in two of the volley-

ball videos, but it is fixed in all the others. As before, all the tests

were performed five times and the average of all of the results was

taken. 

We compare our approach (Online Graph) with other methods

from the literature. The first one was the same particle filter color

tracker we used (PF), but without the graph information. In this

way, we could verify whether the addition of graphs brings any

significant improvement to the classical approach. The second is

a previous version of this method (Offline Graph) as proposed by

Morimitsu et al. (2015) . This method requires an annotated dataset

for training the model offline as well as uses a somewhat simpler

score function. This test allows us to demonstrate the contributions
f this method over the previous one. The third one was SPOT

 Zhang and van der Maaten, 2014 ). This tracker also uses a struc-

ural graph as ours, but only uses distance information for struc-

ure. The tracking procedure consists in classifying the multiple

raphs generated from HOG detectors using a structured SVM. The

ast tracker is STRUCK ( Hare et al., 2011 ), a single object tracker

hat, according to a recent benchmark ( Wu et al., 2015 ), was the

est performing method in several datasets. This method employs

ernelized structured SVM to handle tracking by classifying the in-

ut directly into the spatial position domain. In this way, the in-

ermediate step of dividing the input templates into positive and

egative training samples is skipped. Both PF and STRUCK are sin-

le object trackers and, thus, they track each object independently.

TRUCK was included in the comparison to verify whether the use

f a set of highly discriminative trackers alone would be able to

olve the proposed problem. 

.5. Evaluation on the datasets 

The results are presented in Table 2 . The values correspond to

he average of the results obtained from all videos. Although the

recision of the proposed method is a bit lower than the ones ob-

ained by other approaches, there is a significant increase in ac-

uracy. This result is further evidenced by the best true and false

ositive rates. Even on the volleyball dataset, which does not con-

ain camera cuts, our graph approach is better than STRUCK, show-

ng that the structural constraints are a valuable aid in improving

racking in more cluttered scenes. Also, the online method showed

 significant improvement over the offline one in the number of

D switches. This shows that the proposed approach is much more

table and do not cause many tracking failures. One point to note
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Fig. 15. Tracking results with many objects and a more cluttered scene. Each method is represented by a different color. Dark blue: Online Graph (ours), orange: PF, light 

gray: STRUCK, dark gray: SPOT. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Observed results on the datasets. The arrows indicate whether lower or higher val- 

ues are better. 

Dataset Method MOTP ↑ MOTA ↑ IDSW ↓ TPrate ↑ FPrate ↓ 
Youtube Online graph 0 .589 0 .796 85 0 .893 0 .096 

table tennis Offline graph 0 .622 0 .515 207 0 .743 0 .229 

& PF 0 .608 0 .46 89 0 .724 0 .264 

ACASVA SPOT 0 .539 −0 .008 51 0 .492 0 .5 

badminton STRUCK 0 .619 0 .486 126 0 .734 0 .229 

Youtube Online graph 0 .495 0 .367 624 0 .667 0 .302 

volleyball PF 0 .503 0 .189 850 0 .575 0 .386 

SPOT 0 .447 −0 .608 836 0 .179 0 .786 

STRUCK 0 .552 0 .294 675 0 .631 0 .338 
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s that STRUCK performed similarly or worse than the particle fil-

er approach in the badminton and table tennis sequences. This is

xplained because the videos in these datasets often contain many

ituations of camera cut. When this happens, both PF and STRUCK

an only recover tracking when the target gets close to the point

here it was lost. In that sense, the particle filters usually are able

o recover the target more often because the particles are spread in

 broader area than the STRUCK search radius. Since STRUCK con-

ucts a dense neighbor search, as opposed to the sampled spread

f PF, its search area must be kept smaller, and thus it is unable to

etect the target in many situations. Another reason is that STRUCK

pdates the model along the video. In this case, if the target is

racked incorrectly, the model tends to deteriorate if the target is

ost. It can also be observed that SPOT did not show good results

n these datasets. According to the observed results, the main rea-

on seems to be that the structural model used by SPOT is some-

imes too rigid and not well suited for a situation where the struc-
ural properties between the objects are subject to large changes

n a short amount of time. 

Figs. 13 –15 show some results observed on the videos. As it can

e seen, our approach successfully recovers tracking after occlusion

 Fig. 13 ) or camera cuts ( Fig. 14 ), while PF and STRUCK are not able

o re-detect the target after such situations. The videos from the

olleyball dataset also present scenes captured from two different

ngles and with some camera motion. Even in these more chal-

enging scenes, with many more objects, the graphs help to keep

ore correct tracks ( Fig. 15 ). It is interesting to note that some-

imes even the more robust STRUCK tracker is not able to deal with

emporary occlusion, losing one of the targets, as shown in the last

icture of Fig. 13 . SPOT, on the other hand, does not suffer sig-

ificantly from abrupt motion. However, as it is evident from the

ictures, sometimes the more rigid model ends up causing many

racking misses at the same time. These results further evidence

he flexibility of the proposed method, that is able to accept a wide

ange of spatial configurations. 

We also evaluated the behavior of each tracker during the

ideo. For that, we computed the instantaneous MOTA and MOTP

alues in a single frame. Fig. 16 shows how they vary along time

n a video. 

One of the first things we can notice is that STRUCK and some-

imes PF present very high MOTP in the Youtube table tennis

ideo. However, analyzing only this metric may be misleading. This

appens because, after a camera cut, most PF and STRUCK trackers

re lost. This causes the MOTP to be evaluated only on the few

emaining trackers, which usually shows a higher precision than

hen evaluating many matchings. As can be observed from the

OTA, the accuracy is very low when such events occur, demon-

trating that the actual results are not very good. From the charts,
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Fig. 16. Instantaneous MOTP and MOTA for one video from each dataset including object overlapping and camera cuts. The charts were smoothed using a moving average 

window of 100 frames. 
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he better accuracy of our method is evidenced, as it presents the

est overall performance in all the videos. By evaluating the accu-

acy curves, we can also observe that the other trackers, especially

F and STRUCK, suffer from the drifting problem, i.e. performance

eteriorates as the video goes on. The use of graphs fixes this prob-

em, creating much more stable results even on longer sequences. 

. Conclusion 

We proposed a graph-based approach to exploit the structural

nformation of a filmed scene and to use it to improve tracking of

ultiple objects in structured videos. Each object in the scene rep-

esents one vertex of the graph, and edges are included to consider

heir spatial relations. The graph is then used to generate new

ikely target locations to try to improve tracking during longer pe-

iods of occlusion and camera cut. During the tracking, each object

s individually tracked using particle filters. By merging the cur-

ent tracking with the candidates generated by the model, multiple

raphs are built. They are then evaluated according to the model,

nd the best one is chosen as the new global tracking state. The

ource code of the developed framework is publicly available for

esting. 

One of the advantages of the proposed framework is that it

oes not really rely on any information specific to a particular

racker. Therefore, the single object tracker could be potentially re-

laced by any other more suitable choice for other types of ob-

ects. This makes this approach very flexible and able to deal with

 wider range of applications. 

The results show that the proposed method successfully in-

reases the tracking precision over other state-of-the-art methods

or sports structured videos. As shown by the results, the candi-

ates generated by the structural properties are successfully able

o recover tracking in case of loss, while keeping their identities

orrect. This, in turn, greatly contributes to decrease drifting, which

s also a challenging condition to deal with in longer videos. These

xperiments showed the robustness of the method to handle inter-

bject occlusion and video cuts from a single camera. Situations

epicting the use of moving cameras are also supported, as long

s the camera movement is limited (as evidenced by the volleyball

ests), or smooth enough to provide sufficient time for the graphs

o adapt to the new distributions. Video cuts between different

ameras can also be accepted to some extent. If the cameras main-

ain roughly the same scene structure, e.g. slightly different angles

r a change from a rear/side view to a top one without changing

rientation, the graph configuration would not change so abruptly

nd the graph would be able to incorporate these changes. On the

ther hand, if the change is large, such as changing from one side

f the court to the other, the method most likely would not be able

o adapt well to the new situation. 

One limitation of the proposed framework is that the color-

ased tracker used for each object is not very robust against ap-

earance or illumination changes. It is also sensitive to initializa-

ion parameters, i.e. tracking may present poor results if the pro-

ided bounding box does not cover the object properly. As the

raphs also use the tracker score as a vertex attribute for evalu-

ting, if the color model is not representative enough, the whole

racking may be affected. Therefore, one future extension of this

ork consists in replacing the color-based particle filter single

racker by a more robust one, such as STRUCK ( Hare et al., 2011 ).

he graphs could also be enriched by including other types of edge

ttributes. For example, we could encode more complex appear-

nce and structural relations ( Bloch et al., 2006 ). 

As another future development, we want to improve the

ethod by making it more self-adaptive. One way to do so is

o automatically adjust the number of candidates generated from

ach reference object, or to use the global structure as a whole to
hoose the best locations. This could be done by computing a re-

iability score for each object, combining the hypothesis of all of

eferences into a single set and choosing only the best options. 
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