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While particle filters are now widely used for object tracking in videos, the case of multiple object track-
ing still raises a number of issues. Among them, a first, and very important, problem concerns the expo-
nential increase of the number of particles with the number of objects to be tracked, that can make some
practical applications intractable. To achieve good tracking performances, we propose to use a Partitioned
Sampling method in the estimation process with an additional feature about the ordering sequence in
which the objects are processed. We call it Ranked Partitioned Sampling, where the optimal order in which
objects should be processed and tracked is estimated jointly with the object state. Another essential point
concerns the modeling of possible interactions between objects. As another contribution, we propose to
represent these interactions within a formal framework relying on fuzzy sets theory. This allows us to
easily model spatial constraints between objects, in a general and formal way. The association of these
two contributions was tested on typical videos exhibiting difficult situations such as partial or total occlu-
sions, and appearance or disappearance of objects. We show the benefit of using conjointly these two
contributions, in comparison to classical approaches, through multiple object tracking and articulated
object tracking experiments on real video sequences. The results show that our approach provides less
tracking errors than those obtained with the classical Partitioned Sampling method, without the need
for increasing the number of particles.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Since the 1990’s, the particle filter has been widely used in the
mono-object tracking community, thanks to its natural disposi-
tions for tracking purposes, its reliability to deal with non-linear
systems, and its easiness of implementation. However, extending
this methodology to multiple object tracking is not straightfor-
ward. Usually estimating more objects needs substantially more
particles, the association problem between measures and objects
has to be solved, and interactions between objects should be
modeled.

The adaptation of particle filters to track several objects has
been extensively addressed in the literature, in many different
ways. In [1], the authors propose a Jump Markov System (JMS) that
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models and jointly estimates the object states, the number of
objects to track, and the association hypotheses between measures
and objects. In [2], the particle filter integrates interactions be-
tween objects and measures using a Joint Probabilistic Data Asso-
ciation Filter (JPDAF), that provides an optimal data solution in the
Bayesian framework. In [3] the distribution of association hypoth-
eses is computed using a Gibbs sampler. The authors in [4,5] use a
Joint Multitarget Probability Density (JMPD) to estimate the num-
ber of objects and their states. In [6], the authors model the filter-
ing distribution as a mixture model to handle multiple objects, and
use an Adaboost procedure to detect objects leaving and entering
the images. Two multi-object algorithms are proposed in [7],
namely the Sequential Sampling Particle Filter (SSPF), which indi-
vidually generates objects using a factorization of the importance
weights, and the Independent Partition Particle Filter (IPPF), which
considers that the associations between objects and measures are
independent over the individual objects.

A major issue with the importance sampling, used in particu-
lar in particle filters, is that it suffers from the problem of the
curse of dimensionality [8,9]. This means that the particle filter
requires a number of particles that increases exponentially with
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the number of objects, making the use of a particle filter for mul-
tiple object tracking intractable as soon as the number of objects
is greater than three. Therefore, the authors in [10,11] proposed a
particle filter that avoids this additional cost using a Partitioned
Sampling strategy. In [10], they consider an exclusion principle
to handle the data association problem (i.e. specifying that a
measurement may be associated with at most one object). The
principle of Partitioned Sampling is to partition the state space,
by considering one element of the partition per object. The ob-
jects are processed in a prefixed order, that we call scenario,
and particles that are the most likely to fit with the real state
of the object are selected using a weighted sampling approach.
The considered order matters since it can lead to unsuitable
behaviors of the filter, such as loosing tracks, for example when
the first considered object is hidden. In fact, as pointed in [12],
the use of a prefixed order in the scenario for the joint state esti-
mation can cause a lot of problems, caused by a particle cloud
impoverishment effect. To avoid this, in [12], the filtering distri-
bution is modeled as a mixture law, in which each component
designates a specific order of processing of the objects, that is
estimated using a Partitioned Sampling technique. This idea
was also used in [13] to merge different features of an object.
However, the number of particles used for each component is
fixed, that can limit the performances of the filter if the order
of processing is not optimal [12].

Handling several objects in a particle filter raises another type
of problem. It is often necessary to model possible interactions
between objects, in order to estimate jointly object states. Most
approaches make specific hypotheses (see for example [14]), that
are directly related to the application, making the model not
generalizable. Generally speaking, spatial relations constitute an
important type of structural information, useful in scene descrip-
tion and interpretation, as acknowledged in various domains.
Although most relations have a clear intuitive meaning, expressing
them mathematically is not obvious because they may be vague or
imprecise. This is for instance the case for relative directions such
as to the right of. Modeling such relations in a fuzzy set framework
is then appropriate [15] since it allows considering them as a mat-
ter of degree, which can be tuned according to the context. For in-
stance saying that two objects are far from each other depends on
the application context, on the objects, and on the image resolu-
tion. Several definitions of fuzzy models of spatial relations have
been proposed (see e.g. [16] for a review), and used in structural
object recognition and image interpretation [17–19], data cluster-
ing [20], or single object tracking [21]. This type of information, to
our knowledge, has however not been used so far in a multiple ob-
ject tracking procedure (spatial constraints have only been used in
specific ways, in a non fuzzy formalism [14]), and we show here
that it is interesting to do so.

In this paper, that extends a preliminary work in [22], we pro-
pose to integrate fuzzy spatial constraints into the particle filter
framework for multiple object tracking and to jointly estimate
object states and their optimal processing order. We call this
approach Ranked Partitioned Sampling. This allows us to consider
the whole set of possible orders and to automatically prune irrele-
vant scenarios. We consider here that the number M of objects is
known (but can vary over time), and we handle automatically
possible hidden parts of objects by other ones.

This article is organized as follows: The particle filter for multi-
ple object tracking is first presented in Section 2. The Partitioned
Sampling procedure proposed in [10,11] is described in Section 3.
Section 4 presents the fuzzy spatial constraint framework and its
introduction in the particle filter framework, as our first contribu-
tion. The Ranked Partitioned Sampling, which constitutes the
second main contribution of this paper, is then proposed in Section
5, and some considerations about the visibility of objects are given
in Section 6. We show experimental results in Section 7, before
concluding in Section 8.

2. Particle filter for multiple object tracking

2.1. Particle filter

Let us consider a classical filtering problem and denote by
xt 2 X the hidden state at time t of an object to be tracked, and
by yt 2 Y the measurement state extracted from the image se-
quence. The system describing the temporal evolution of xt and
the measurement equation are defined as follows:

xt ¼ ftðxt�1;vtÞ ð1Þ
yt ¼ htðxt;wtÞ ð2Þ

where ft models the non-linear temporal evolution of xt, ht is the
non-linear measurement equation, and vt and wt are independent
white noises. The non-linear Bayesian tracking consists in estimat-
ing the posterior filtering density function p(xtjy1:t) (where y1:t de-
notes the series of measures from time 1 to time t), expressed by:

pðxt jy1:tÞ ¼
pðytjxtÞ pðxtjy1:t�1ÞR

X
pðyt jx0tÞ pðx0t jy1:t�1Þdx0t

ð3Þ

with p(xtjy1:t�1) the prediction (or prior) density function defined
as:

pðxt jy1:t�1Þ ¼
Z
X

pðxtjxt�1Þ pðxt�1jy1:t�1Þdxt�1 ð4Þ

When the filtering density function cannot be computed in a
closed form, i.e. when the system is non-linear and non-Gaussian,
particle filters are used to approximate it by a weighted sum of N
Dirac masses dxðnÞt

ðdxtÞ centered on hypothetic state realizations

xðnÞt

n oN

n¼1
of the state xt, also called particles [23]. Then, the filtering

distribution Pðdxt jy1:tÞ is recursively approximated by the empiric

distribution PNðdxt jy1:tÞ ¼
PN

n¼1wðnÞt dxðnÞt
ðdxtÞ, where xðnÞt is the nth

particle and wðnÞt its weight. If an approximation of Pðdxt�1jy1:t�1Þ
is known, the process is divided into three main steps:

1. The diffusion step consists in estimating p(xtjy1:t�1) by propa-

gating the particle swarm xðnÞt�1;w
ðnÞ
t�1

n oN

n¼1
using an importance

function q xt jxðnÞ0:t�1; yt

� �
.

2. The update step then computes new particle weights using the
new observation yt, as:
wðnÞt / wðnÞt�1

pðyt jx
ðnÞ
t Þp xðnÞt jx

ðnÞ
t�1

� �
qðxtjxðnÞ0:t�1; ytÞ

; such that
XN

i¼1

wðnÞt ¼ 1:
3. Resampling techniques are employed to avoid particle degener-
acy problems, leading for instance to the classical Sequential
Importance Resampling (SIR) filter [23].

2.2. Multiple object tracking using particle filter

When dealing with multiple objects, the previous model has to
be adapted. The first proposed approach might be the one in [24],
and consists in simply applying the SIR filter [23] to xt defined as a
concatenation of several objects states xt ¼ ðx1

t ; . . . ;xM
t Þ, with

xi
t 2 Xi the unknown state of the ith object and M the fixed number

of objects. The same process as the one described in Section 2.1 can
then be used. However, a problem involved in multiple object
tracking is that the likelihood cannot be directly computed. Indeed,
the presence of several objects in the images induces several



Fig. 1. Diagram of the weighted Partitioned Sampling procedure (adapted from [10]).
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measures (observations), and the problem is to know which object
is related to which measure(s) and to compute its likelihood
accordingly. This is known as the data association problem. Let
us denote by yt ¼ ðy1

t ; . . . ; yO
t Þ the measurement state extracted

from the image sequence: it is necessary to determine the good

associations between objects xi
t

� �M

i¼1 and observations yj
t

n oO

j¼1
.

Some usual questions to be answered are: can an object be related
to several measures, or at most to one measure? Can a measure be
a false alarm? Can it come from several objects? Each possible an-
swer leads to specific hypotheses and to different models of asso-
ciation between data (observations, measures) and targets (objects
in image processing). For example, the authors in [3] consider that
a measure can come from an object or be a false alarm, and that an
object can provide zero, one or several measures. In [2], the authors
also consider that a measure can come from an object or be a false
alarm, but that an object can provide at most one measure. Other
approaches [25] propose to represent the data association problem
in a game theoretic formalism, and to find a Nash equilibrium indi-
cating that a satisfactory global configuration was found. Other
classical multiple object tracking particle filters have been pro-
posed in [1,4–7].

However, in computer vision, the hypotheses of the data associ-
ation problem are often relaxed, and the most usual one is that a
measure can come from an object or be a false alarm (and one ob-
ject gives one measure). This hypothesis was used in [10,26], and
led to deal with the uncertainty of the origin of measures by only
modeling the problem as a visibility of objects. This is simpler,
and can be done by using a visibility vector and by estimating
states using a particle filter algorithm [10,27]. This implies that
the measure process depends on the visibility of objects. In the
proposed method, the visibility will be considered too, in particular
in the case of hidden objects. This will be detailed in Section 6.
2.3. Problem of state vector dimension

Due to the importance sampling procedure used in particle fil-
ters, an increase in the dimensionality of xt systematically induces
an increase in the variance of the particle weights, leading to a po-
tential impoverishment of the particle set (i.e. only a small part of
this set actually represents the object). The issues related to high
dimensions have been highlighted in [28]. Filters dedicated to mul-
tiple object tracking have been proposed in [29,30], and the Rao-
Blackwellised particle filter was proposed in [31]. However, the
effective implementation of these filters is not always straightfor-
ward and may even not be possible.

In the case of tracking two objects, where xi
t and xj

t are two
states evolving in the same space X�, it has been shown in [11] that
N2 particles are necessary to achieve the same level of tracking per-
formance as when tracking a single object with N particles. Simi-
larly, it can be shown that for M objects, N is exponentially
increasing with the dimension of xt.

To tackle the dimensionality problem, the authors in [11] pro-
pose, instead of directly sampling from the joint configuration of
the objects, to decompose the vector state of the objects by parti-
tioning the state space, and then handling one object at a time. This
process is called Partitioned Sampling, and is presented next.
3. Partitioned Sampling

The Partitioned Sampling (PS), introduced in [10,11], decom-
poses the joint state space X into a partition (or a Cartesian prod-
uct) of M elements: X ¼ X1 � . . .�XM , with Xi the state space of
the ith object. The construction of this partition is implicit, and
consists in associating each element Xi of the partition with an ob-
ject i, and for each of them, applying the transition (dynamics) and
performing a weighted resampling operation. It is then necessary
to define one transition function and one weighted resampling
function per object. The partitioning is supposed to be known,
and for multiple object tracking, an element could be one object
or a group of objects. Here we assume that the partition is defined
according to the set of objects to be tracked (one element per ob-
ject). In the following, we first explain the weighted resampling
strategy, and then the global algorithm of Partitioned Sampling.

3.1. Weighted resampling

A weighted resampling operation transforms a particle set

xðnÞt ;wðnÞt

n oN

n¼1
into another one ~xðnÞt ;

wðnÞt
qðnÞ

� �N

n¼1
while keeping the dis-

tribution intact [10,32]. We consider a strictly positive function g,
also called weighting function. The resampling process aims at
resampling the particles set according to the peaks of g, i.e. gener-
ating more samples for higher values of g. The weighting factors

qðnÞ
� �N

n¼1 are called importance weights and are defined as

qðnÞ ¼ g xðnÞt

� �
=
PN

u¼1g xðuÞt

� �
. Finally the particle set ~xðnÞt ;

wðnÞt
qðnÞ

� �N

n¼1
is

obtained by simulating according to the distribution defined by

the weights qðuÞ
� �N

u¼1, i.e. ~xðnÞt �
PN

u¼1qðuÞdxðuÞt
ðxtÞ.

3.2. The Partitioned Sampling procedure

By denoting � the resampling procedure according to the parti-

cle weights wðnÞt

n oN

n¼1
, fi the dynamics process of object i, possibly

conditioned by objects already generated x1:i�1
t , xk

t

� �i�1
k¼1, and �gi

the weighted resampling operation of the ith object, the weighted
Partitioned Sampling operation is summarized in Fig. 1, and the
whole algorithm is given in Algorithm 1.

Algorithm 1. Approximation of the posterior distribution
Pðdxt jy1:tÞ by a particle filter algorithm using Partitioned Sampling
with M objects (see text for notations).

Input: Approximation of the posterior distribution at t � 1:

Pðdxt�1jy1:t�1Þ ’
PN

n¼1wðnÞt�1dxðnÞt�1
ðdxt�1Þ

Output: Approximation PN of the posterior distribution at t:
Pðdxt jy1:tÞ

begin
1. Resample xðnÞ0:t�1;1=N

n oN

n¼1
from xðnÞ0:t�1;w

ðnÞ
t�1

n oN

n¼1
using the

multinomial resampling algorithm [33,34].
2. Partitioned Sampling: for i = 1, . . . ,M � 1 do

� Generate the object of index i: for n = 1, . . . ,N do
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�xi;ðnÞ
t � qðxi

t jx
i;ðnÞ
t�1 ; ytÞ

� Compute the resampling probabilities qðnÞ
� �N

n¼1: for
n = 1, . . . ,N do

qðnÞ / gið�x
i;ðnÞ
t Þ

qð�xi;ðnÞ
t jxi;ðnÞ

t�1 ; ytÞ
; such that

XN

u¼1

qðuÞ ¼ 1

� Resample using the weighted resampling: for
n = 1, . . . ,N do
� Select the index k(n) of a sample randomly generated

from probabilities qðuÞ
� �N

u¼1:

kðnÞ � p kj qðuÞ
� �N

u¼1

� �
¼
XN

u¼1

qðuÞdk
u

� Set the state: ~xðnÞt ¼ �xðk
ðnÞÞ

t

� Compute the normalized importance weight:

~wðnÞt /
wðk

ðnÞÞ
t

qðkðnÞÞ
; such that

XN

u¼1

~wðuÞt ¼ 1

� Copy the particle cloud x1:i;ðnÞ
0:t ;xiþ1:M;ðnÞ

0:t�1

� �
;wðnÞt

n oN

n¼1
¼

x1:i�1;ðnÞ
0:t ; ~xi;ðnÞ

0:t ;x
iþ1:M;ðnÞ
0:t�1

� �
; ~wðnÞt

n oN

n¼1

3. for n = 1, . . . ,N do
� Generate for the last object of index M:
xM;ðnÞ
t � qðxM

t jx
M;ðnÞ
t�1 ; ytÞ

� Compute importance weights using the multiple object
joint likelihood:

w�ðnÞt / wðnÞt
pðyt jx

ðnÞ
t Þ
QM

i¼1pðxi;ðnÞ
t jxi;ðnÞ

t�1 Þ
qðxM;ðnÞ

t jxM;ðnÞ
t�1 ; ytÞ

;

such that
XN

u¼1

w�ðuÞt ¼ 1

return PNðdxt jy1:tÞ ¼
PN

n¼1w�ðnÞt dxðnÞt
ðdxtÞ

Although any weighting function gi asymptotically keeps the
posterior probability unchanged, the objective of this step is to ob-
tain an accurate representation of this probability. We consider a
factorization of the likelihood such that it allows us to deal with
each object independently, hence each observation is related to
one object. Let yt ¼ ðy1

t ; . . . ; yM
t Þ be the observation vector. The like-

lihood is given by pðyt jxtÞ ¼
QM

i¼1pðyi
t jxi

tÞ. Then, the likelihood
hi ¼ pðyi

t jxi
tÞ of object i appears to be a natural choice for defining

the weighting function gi, and leads to the diagram proposed in
Fig. 2, in which the chosen prior importance distribution for the
dynamics is fi ¼ pðxi

t jxi
t�1Þ. Note that the assumption of indepen-

dence of the observations conditionally to the states is commonly
used for modeling the likelihood in a simple way.
3.3. Discussion

The Partitioned Sampling is a very efficient sampling method
since, by alleviating the dimension problem, it considerably re-
duces the computation cost. However, as discussed in [12], the or-
Fig. 2. Diagram of the Partitioned Sampling procedure using the lik
der of processing of the considered objects has a direct impact on
the performance of the tracker. This is due to the M successive
weighting resampling procedures performed by the algorithm.
Hence, objects placed at early stages will be prone to more impov-
erishment effects than the others. On the other side, objects placed
at the end may suffer from a lack of diversity even before being
considered, which may also lead to tracking errors. Illustrations
of this drawback can be found in [35] (Chapter 4).

The method presents an additional difficulty. If occlusions oc-
cur, one may quite rightly handle visible objects first, and hence
adopt a dynamic ordering strategy. The solution proposed in [10]
is called Branched Partitioned Sampling (BPS), and consists in adding
a vector of visibility to the global estimation, and then in recur-
sively grouping together particles with an identical realization of
this vector, generating an hypothesis tree. Considering a tracking
problem with M objects, this method may divide particles into
M! hypotheses. This solution has however two major drawbacks.
First, by dividing N particles into M! hypotheses, the interest of
the Partitioned Sampling is lost, since the particles no longer try
to survive over a large set of N particles but over possible irrelevant
sets of N/M! elements. Secondly, the algorithm can propagate par-
ticles into sub-trees of the hypothesis tree in which the visibility
vector is erroneous, with no possibility of comparing them with
the particles of the other sub-trees: this can lead to a false joint
posterior distribution estimation.

The Dynamic Partitioned Sampling (DPS), proposed in [12], uses a
mixture model to represent the posterior distribution. Each mix-
ture component represents a specific order of processing of the ob-
jects. In their experiments, the authors used M predefined
permutation sets, each one owning N/M particles. This strategy im-
proves the Partitioned Sampling results since it alleviates impover-
ishment effects, especially when occlusions occur. However, using
a fixed small subset of possible permutations might not be robust.
Moreover, splitting particles into several sets has the same draw-
back as the Branched Partitioned Sampling, since particles evolve
into subsets.

To overcome these problems, we propose a new sampling strat-
egy, called Ranked Partitioned Sampling (RPS). Moreover, in order to
take into account interactions between objects in their joint state
estimation, we propose to introduce spatial relations in the defini-
tion of the probability of an object’s state at time t, conditionally to
the object’s state at t � 1 and to the other objects’ states. We first
describe our modeling of spatial relations in Section 4, and its
introduction into Partitioned Sampling, then present our Ranked
Partitioned Sampling in Section 5.
4. Modeling fuzzy spatial constraints between objects

In this section, we propose a new model for integrating spatial
constraints expressed in a fuzzy form in a probabilistic tracking
approach.
4.1. Modeling fuzzy spatial constraints

We propose to model explicitly interactions between objects as
fuzzy spatial relations defined for one, two or more objects. They
will be considered as constraints the objects should satisfy during
the tracking process, and are therefore called fuzzy spatial
constraints.
elihood hi ¼ pðyi
t jxi

tÞ as weighting function (adapted from [10]).
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Each type of relation is considered as a linguistic variable, tak-
ing a small number of linguistic values [36]. The granularity of this
representation can be defined by the application. The semantics of
each linguistic value is defined by a fuzzy set on the variable do-
main. For instance for a distance relation, this domain is Rþ. If
two objects have to be close to each other, then a fuzzy set lclose

is defined on this domain. For an instance of these two objects,
their actual distance d is computed, and lclose(d) provides the de-
gree to which the relation is satisfied. This principle is used here
for all considered relations. Typically such degrees of satisfaction
may be evaluated between an object as seen at instant t � 1 and
the same object at t, or between an object and previously pro-
cessed objects in the order of processing.

In this work, we consider more specifically fuzzy spatial con-
straints defined by unary fuzzy operators, such as the concept of
the size of an object (which may take the values small, medium,
large, . . . ); by binary operators, such as the concept of relative ori-
entation (to the right of, to the left of, etc.); by ternary operators,
such as the concept of rank in an ordered sequence (the first of,
in the middle of, the last of); and more generally n-any operators.
In this paper, we focus on binary, ternary and quaternary opera-
tors, considering concepts of intersection, distance, angle and
alignment. To merge several spatial relations or constraints, a fuzzy
fusion operator is used (see e.g. [37]).

Let x�t be an hypothetic state of an object and ~xt ¼ ð~x1
t ; . . . ; ~xL

t Þ be
the vector state of L objects already processed at time t in a given
order of processing. We now define a fuzzy membership function
m~xt ðx�t Þ 2 ½0;1� which describes to which degree an object configu-
ration x�t satisfies the spatial constraints imposed by ~xt . Denoting
by K the number of spatial constraints we consider, we define their
fusion m~xt as:

m~xt ðx�t Þ ¼ N
K

k¼1

�mk
~xt
ðx�t Þ ð5Þ

where N is a fusion operator, for example a t-norm (fuzzy conjunc-
tion) [38], and �mk

~xt
2 ½0;1� the membership function representing

the kth spatial constraint, that defines the degree to which object
x�t satisfies the constraint k, with respect to objects ~xt . For example,
considering a binary fuzzy relation, Bmk

~xt
is defined as:

Bmk
~xt
ðx�t Þ ¼ w

L

l¼1

Bmk
~xl

t
ðx�t Þ ð6Þ

with w a fusion operator, for example a t-norm, and Bmk
~xl

t
ðx�t Þ 2 ½0;1�

the value of the membership function of the kth spatial constraint
between the current object and object l (component ~xl

t of ~xt).
For example, if xt corresponds to the spatial coordinates of an

object, then the value at medium distance between two objects x�t
and ~xl

t can be defined by a trapezoidal function such as:
Fig. 3. Spatial representations of orientation constraints between fingers of the hand, exp
left of ring finger, (c) relation to the left of little finger, and (d) global constraint result by u
and little finger) are displayed in red. Black indicates that the constraint is satisfied. The s
(here, a rectangular one).
Bmk
~xl

t
ðx�t Þ ¼

kx�t�~xl
tk2�a

b�a if kx�t � ~xl
tk2 2�a; b½

1 if kx�t � ~xl
tk2 2 ½b; c�

1� kx
�
t�~xl

tk2�c
d�c if kx�t � ~xl

tk2 2�c; d½
0 otherwise

8>>>>><
>>>>>:

with a, b, c, d the parameters of the trapezoidal function with sup-
port [a, d] and core [b, c].

The form of function Bmk
~xl

t
can be chosen depending on the appli-

cation. Fig. 3 shows an example of spatial relation constraints for
the fingers of a hand. Here we show a simple example using a rect-
angular membership function (i.e. binary membership) just to
illustrate the proposed idea. Section 7 presents more fuzzy spatial
relation constraints, with other fuzzy membership functions (see
for example Fig. 15). The middle finger corresponds to state
x�t ¼ xm

t for which we want to constrain the central position, and
fingers index finger, ring finger and little finger form the concate-
nated state vector ~xt ¼ ð~xin

t ; ~x
ri
t ; ~x

li
t Þ that have already been pro-

cessed. The binary spatial constraint associated with index finger
Bmk

~xin
t
ðxm

t Þ represents the degree to which the middle finger is to
the right of the index finger (Fig. 3a), and the spatial constraints
associated with the ring finger and little finger represent the degree
to which the middle finger is to the left of the ring and little fingers
(Fig. 3b and c). By using the t-norm min as fusion operator w (Eq.
(6)), we get the global orientation constraint (Fig. 3d). For visuali-
zation purpose, in these figures spatial representations of the con-
straints are used, where gray levels represent the degree of
satisfaction of the constraints at each point in space (black corre-
sponds to a high degree of satisfaction). This example will be fur-
ther developed in Section 7.3.

In a similar way, considering ternary constraints, Tmk
~xt

is defined
as:

Tmk
~xt
ðx�t Þ ¼ w

L

l1¼1
w
L

l2¼l1þ1

Tmk
~x

l1
t ;

~x
l2
t

ðx�t Þ ð7Þ

with Tmk
~x

l1
t ;

~x
l2
t

ðx�t Þ 2 ½0;1� the value of the membership function of the

kth spatial constraint between the current object and objects l1 and
l2.

Lastly, the final membership value l~xt
ðx�t Þ describing fuzzy spa-

tial constraints imposed by a set of objects ~xt is defined from the
function m~xt ðx�t Þ (Eq. (5)), by using a fixed exponent c 2 Rþ to con-
trol the form of the function l~xt

:

l~xt
ðx�t Þ ¼ m~xt ðx�t Þ

c ð8Þ

Examples of binary, ternary, and quaternary constraints modeled
respectively by Bmk

~xl
t
; Tmk

~x
l1
t ;

~x
l2
t

and Qmk
~x

l1
t ;

~x
l2
t ;

~x
l3
t

will be given in Section 7.
ressed for the middle finger: (a) relation to the right of index finger, (b) relation to the
sing the fusion operator w = min. Already processed objects (index finger, ring finger
patial constraint is computed at each pixel, using the function modeling the relation
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4.2. Introducing fuzzy spatial constraints into a probabilistic
framework

The next step consists in introducing the fuzzy spatial con-
straints l~xt

ðx�t Þ into the probabilistic framework used for tracking.
We propose to define the transition probability distribution of an
object x�t conditionally to its past realization x�t�1 and to a group
of already processed objects ~xt by combining the transition density
pðx�t jx�t�1Þ and spatial constraints imposed by the vector ~xt , mod-
eled by l~xt

ðx�t Þ.
Introducing fuzzy information in a probabilistic context may be

done using the possibility theory [39], or defining fuzzy events
[40]. Fuzzy events have already been introduced in a particle filter
framework in order to specify the dynamics of parameters [21],
and are appropriate for this kind of probabilistic model, since they
allow combining in an elegant way fuzzy set semantics and prob-
abilistic ones. In this section, after recalling the concept of fuzzy
event, we will employ a similar strategy as in [21] to define the
conditional distribution Pðx�t 2 dx�t jx�t�1; ~xtÞ.

4.2.1. Fuzzy event [40]
A fuzzy event A is a fuzzy set, defined by a measurable mem-

bership function lA : O! ½0;1�. Under a probability measure P,
the probability of a fuzzy event A is defined as:

PðAÞ ¼ E½lA� ¼
Z
O

lAðoÞ dP ð9Þ

The conditional probability of a fuzzy event A of membership func-
tion lA given a fuzzy event B of membership function lB is ex-
pressed as:

PðAjBÞ ¼ PðABÞ
PðAÞ ¼

R
O
lAðoÞlBðoÞ dPR

O
lAðoÞ dP

ð10Þ

where the probability of the conjunction PðABÞ corresponds to the
product t-norm of A and B and is defined by the membership func-
tion lAlB, so as to be consistent with the probabilistic framework.

4.2.2. Fuzzy spatial constraints
We propose to use the concept of fuzzy event to integrate the

fuzzy spatial constraints l~xt
imposed by a group of already pro-

cessed objects ~xt into a probabilistic framework, in order to guide
the transition of a new object x�t . Here the fuzzy event represents
the spatial constraints, noted A~xt , and its membership function is
defined by l~xt

(Eq. (8)). The transition of the new object x�t should
also use its previous state x�t�1 to take into account its dynamics,
which is described by a classical transition model. We define the
transition distribution Pðx�t 2 dx�t jx�t�1; ~xtÞ depending on the con-
straints imposed by already processed objects ~xt and on the previ-
ous state x�t�1, with dx�t a fuzzy event of infinitesimal support
centered on x�t , as:

Pðx�t 2 dx�t jx�t�1; ~xtÞ ¼ Pðx�t 2 dx�t jx�t�1; x
�
t 2A~xt Þ ð11Þ

Considering the conditional distribution given in Eq. (10), the tran-
sition distribution Pðx�t 2 dx�t jx�t�1; ~xtÞ is written as:

Pðx�t 2 dx�t jx�t�1; x
�
t 2A~xt Þ ¼

Pðx�t 2 dx�t :A~xt jx�t�1Þ
Pðx�t 2A~xt jx�t�1Þ

¼
R
X� ldx�t

ðxÞ l~xt
ðxÞ pðxjx�t�1ÞdxR

X� l~xt
ðxÞpðxjx�t�1Þdx

¼ DðA~xt ; x
�
t�1Þ dx�t l~xt

ðx�t Þ pðx�t jx�t�1Þ ð12Þ

with X� the definition space of x⁄ and l~xt
the fuzzy spatial constraints

imposed by ~xt and defined by Eq. (8). The last line in Eq. (12) is obtained
by using the fact that the fuzzy set dx�t is of infinitesimal support cen-
tered on x�t . Generally, the computation of the denominator
DðA~xt ;x
�
t�1Þ is intractable in a closed form. We propose to approximate

this term using a simple S-weighted sampling procedure:

D A~xt ;x
�
t�1

� 	
	

XS

s¼1

l~xt
xðsÞ
� 	" #�1

with xðsÞ
� �S

s¼1 � pðxjx�t�1Þ ð13Þ

In practice, only a small number of samples is required (e.g. S = 10).
Moreover, this computational cost may be greatly reduced thanks to
the resampling procedure used in the particle filter: first, it allows
computing the term just for distinct particles; secondly, particles with
the same ancestors may be used to estimate this term, hence reducing
the number S of samples by the number of duplicated particles.

In general, it is difficult to analytically compute l~xt
, making the

simulation according to Pðx�t 2 dx�t jx�t�1; ~xtÞ unfeasible. The term
l~xt
ðx�t Þ is then considered in the correction phase (i.e. when updating

the particle weights), and the simulation of the particles is done by
only using pðx�t jx�t�1Þ. In cases where a closed form of the function
l~xt

is known, the simulation according to Eq. (12) would remain dif-
ficult (except for very simple cases), but would allow us to generate
particles depending on constraints l~xt

, and then to take into account
the transition distribution pðx�t jx�t�1Þ during the weight update step.

4.3. Spatial relations and Partitioned Sampling

Let us now come back to the Partitioned Sampling approach.
The dependence between states is handled by our model introduc-
ing fuzzy spatial constraints, and we introduce the interaction den-
sity function defined in Eq. (8) into the dynamical model, leading to
fi ¼ pðxi

t jxi
t�1Þ DðAx1:i�1

t
;xi

t�1Þ lx1:i�1
t
ðxi

tÞ. This model can be viewed as
the pairwise Markov Random Field prior probability used in
[13,14,41]. However, in a more general perspective, it is often
impossible to directly generate samples from lx1:i�1

t
ðxi

tÞ. Then, we
consider fi ¼ pðxi

t jxi
t�1Þ whereas the likelihood integrates the inter-

action term, i.e., hi ¼ piðyt jxi
tÞ DðAx1:i�1

t
;xi

t�1Þ lx1:i�1
t
ðxi

tÞ. This proce-
dure has no impact on the posterior probability since it can be
seen as an importance sampling step [14]. Note that a more sophis-
ticated importance distribution could also be used, as in Algorithm
1. Under these assumptions, the approximation process is simpli-
fied, and given in Algorithm 2.

Algorithm 2. Approximation of the posterior distribution
Pðdxt jy1:tÞ by a particle filter algorithm using Partitioned Sampling,
with M objects, and using as weighting function for the ith object
its likelihood, integrating spatial constraints.

Input: Approximation of posterior density at t � 1:

Pðdxt�1jy1:t�1Þ ’
PN

n¼1wðnÞt�1dxðnÞt�1
ðdxt�1Þ

Output: Approximation PN of the posterior density at t:
Pðdxt jy1:tÞ

begin
1. Copy the particle cloud xðnÞt ;wðnÞt

n oN

n¼1
¼ xðnÞt�1;w

ðnÞ
t�1

n oN

n¼1
2. for i = 1, . . . ,M don oN n oN

� Resample xðnÞ0:t ;1=N

n¼1
from xðnÞ0:t ;w

ðnÞ
t

n¼1
using the

multinomial resampling algorithm.
� for n = 1, . . . ,N do
� Generate xi;ðnÞ

t � pðxi
t jx

i;ðnÞ
t�1 Þ

� Compute importance weights:

wðnÞt / pðyi
t jx

i;ðnÞ
t Þ DðAx1:i�1;ðnÞ

t
;xi;ðnÞ

t�1 Þ lx1:i�1;ðnÞ
t

ðxi;ðnÞ
t Þ;

such that
XN

u¼1

wðuÞt ¼ 1

return PNðdxt jy1:tÞ ¼
PN

n¼1wðnÞt dxðnÞt
ðdxtÞ
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5. Ranked Partitioned Sampling (RPS)
The main idea behind the method we propose is to jointly esti-
mate the state of the objects and their order of processing. Objects
with highest confidence are considered in earlier stages, because they
are supposed to better get through the impoverishment phenome-
non of the particles. Each processing order is then compared with
the others, implicitly pruning unlikely branches. The adaptive choice
of the order of processing aims at limiting the impoverishment effect.

A key point is to introduce a random variable oi
t representing

the position (or rank) of object i in a processing order. Let
ot ¼ ðo1

t ; . . . ;oM
t Þ be the set of ranks for all objects at time t, i.e. a

permutation over M objects. We call scenario the inverse permuta-
tion o�1

t considered at a particular instant t, denoted by
st ¼ ðs1

t ; . . . ; sM
t Þ, and which represents the ordered sequence of ob-

jects. Hence the kth component of a scenario is defined as follows:
sk

t ¼ i if and only if oi
t ¼ k (or in an equivalent manner,

sk
t ,

PM
i¼1i dk

oi
t
, with db

a the Kronecker function that equals 1 if

a = b, 0 otherwise). It indicates the object processed at step k.
Let us consider the following example: four objects are consid-

ered, with their ranks o = (2, 3, 4, 1). This means that object 1 is
considered in 2nd position, object 2 in 3rd position, etc. The sce-
nario then corresponds to s = (4, 1, 2, 3) and indicates in which or-
der objects will be considered in the sequential estimation process
(first object 4, then object 1, etc.).

We consider fixed probabilities of transition of the positions (i.e.
independent of objects i and time t):

8i2 1; . . . ;Mf g;8t; Pðsh
t ¼ ijsk

t�1¼ iÞ,Pðoi
t ¼hjoi

t�1¼ kÞ,ak;h: ð14Þ

The probability Pðoi
t ¼ hjoi

t�1 ¼ kÞ is meaningful and useful to
indicate the probability for object i to move from position k in
the scenario at t � 1 to position h in the scenario at t. On the other
hand, sk

t is mainly used for indicating the rank of each object at
time t, but we are not directly considering probabilities such as
Pðsk

t ¼ ijsk
t�1 ¼ jÞ (i.e. probability that object j has the rank k at

t � 1 and is then replaced by object i at this position at t), since
in general no prior information is available to derive this probabil-
ity in a meaningful way. So it is more relevant to deal with
Pðoi

t ¼ hjoi
t�1 ¼ kÞ.

The use of a predefined and fixed transition matrix allows to
intuitively set transition probabilities of the discrete process. For
this modeling, we favor static states, and coefficients ak,h have
therefore maximal values on the diagonal. However the matrix
does not need to be symmetric, as it will be the case in Section 7
(see for example Eq. (21)). This matrix is denoted by
Qa ¼ ðak;hÞðk;hÞ2f1;...;Mg2 .

By first considering objects placed at the earliest positions at
time t � 1, the joint transition distribution of ot is expressed as:

Pðot jot�1Þ ¼ P os1

t jos1

t�1

� �YM
k¼2

P osk

t josk

t�1 , k;os1

t ; . . . ;osk�1

t

� �
ð15Þ

with sk
, sk

t�1, the time subscript being omitted to simplify
notations.

In the previous example, let us assume that the ordering o = (2,
3, 4, 1) was estimated at t � 1. Then Eq. (15) gives:

Pðot jot�1Þ¼Pðo4
t jo4

t�1ÞPðo1
t jo1

t�1;o
4
t ÞPðo2

t jo2
t�1;o

4
t ;o

1
t ÞPðo3

t jo3
t�1;o

4
t ;o

1
t ;o

2
t Þ

The way the joint distribution Pðotjot�1Þ is decomposed is thus pro-
vided by the estimation at t � 1 of the scenario st�1 = (4, 1, 2, 3).

The last conditional distribution in Eq. (15) depends on the
transition matrix defined in Eq. (14) and on the positions already
allocated to previous objects:
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P osk

t ¼ hjosk

t�1 , k;os1

t ; . . . ;osk�1

t

� �
¼ 1�

Xk�1

j¼1

dh
osj

t

" #
ak;h þ

1
M � kþ 1

Xk�1

j¼1

a
k;osj

t

" #
ð16Þ

with sk
, sk

t�1. The first term in the product ensures that the proba-
bility is set to 0 if the position h has already been assigned. The sec-
ond term contains the transition probabilities from positions h to k,
as defined in Eq. (14), and a term that uses probabilities of transi-
tion of the assigned positions (i.e. the positions os1

t ; . . . ;osk�1

t of al-
ready processed objects) to balance the distribution in a uniform
way. As k � 1 positions have already been allocated, there remain
M � (k � 1) positions available, that explain the common denomi-
nator of the last sum. A proof that Eq. (16) defines a probability dis-
tribution is given in Appendix A.

Let us again detail Eq. (16) for the previous example, with
ot�1 = (2, 3, 4, 1) and st�1 = (4, 1, 2, 3). The conditional probabilities
defined by Eq. (16) are then:

Pðo4
t ¼ hjo4

t�1 ¼1Þ¼a1;h

Pðo1
t ¼ hjo1

t�1 ¼2;o4
t Þ¼ 1�dh

o4
t

h i
a2;hþ

1
3
a2;o4

t


 �

Pðo2
t ¼ hjo2

t�1 ¼3;o4
t ;o

1
t Þ¼ 1�ðdh

o4
t
þdh

o1
t
Þ

h i
a3;hþ

1
2
ða3;o4

t
þa3;o1

t
Þ


 �
Pðo3

t ¼ hjo3
t�1 ¼4;o4

t ;o
1
t ;o

2
t Þ¼ 1�ðdh

o4
t
þdh

o1
t
þdh

o2
t
Þ

h i
a4;hþa4;o4

t
þa4;o1

t
þa4;o2

t

h i

Let us now detail the joint estimation of state and scenario.
We decompose the joint transition density p(xt,otjxt�1,ot�1) in the
following way:

pðxt ;otjxt�1;ot�1Þ ¼ pðxt jxt�1;otÞ Pðotjot�1Þ ð17Þ

where p(otjot�1) is the transition distribution defined in Eq. (15).
Conditioned by the sequence order defined by ot and st, the transi-
tion density of the vector state xt is decomposed by first considering
the objects placed in the earliest positions:

pðxt jxt�1;otÞ ,
YM
k¼1

p xsk
t

t jx
sk

t
t�1;x

s1
t

t ; . . . ;xsk�1
t

t

� �
ð18Þ

Hence, the order of the Markov chain defined by the compo-
nents of xt, i.e. by the components of objects xi

t

� �M

i¼1, is given by
the discrete process of the list of ranks ot, or, in an equivalent man-
ner, by the discrete process representing a scenario st.

For the example of scenario st�1 = (4, 1, 2, 3), if we suppose that
its transition at t is st = (4, 2, 1, 3), then st defines the decomposi-
tion of the joint probability density of the state dynamics (Eq.
(18)):

pðxt jxt�1;otÞ ¼pðx4
t jx4

t�1Þ pðx2
t jx2

t�1;x
4
t Þ pðx1

t jx1
t�1;x

4
t ;x

2
t Þ pðx3

t jx3
t�1;x

4
t ;x

2
t ;x

1
t Þ

According to the discussion in Section 3, we simplify the dy-
namic process by conditioning an object’s state only by its own
state at t � 1:

fsk
t
¼ p xsk

t
t jx

sk
t

t�1; x
s1

t
t ; . . . ;xsk�1

t
t

� �
¼ p xsk

t
t jx

sk
t

t�1

� �
ð19Þ

This choice is considered for the simplicity of the presented algo-
rithm. Defining fsk

t
by an importance function q, such as in Algo-

rithm 1, is of course possible. In the same way, the likelihood is
defined as:

pðyt jxt ;otÞ ,
YM
k¼1

p ysk
t

t jx
sk

t
t

� �
ð20Þ

To summarize, at a time t, for each particle, the algorithm first
generates a scenario. Then, at position k of the process (scenario),
it resamples the set of particles, proposes a new state of the object
sk

t at this position using dynamics, and computes the likelihood.



Fig. 4. Diagram of the Ranked Partitioned Sampling procedure using the likelihood as weighting function.
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The approximation of the joint filtering distribution of (xt,ot) is ob-
tained once the M positions have been computed. By setting the fi-
nal likelihood, taking into account interactions between objects,

hsk
t
¼ p ysk

t
t jx

sk
t

t

� �
D A

x
s1
t

:sk�1
t

t

;xsk
t

t�1

� 

l

x
s1
t

:sk�1
t

t

xsk
t

t

� �
, we obtain the dia-

gram in Fig. 4, and the approximation process is given in Algorithm
3. As in Algorithm 2, we consider, to simplify, the weighting func-
tion gi = hi and the importance distribution fi ¼ pðxi

t jxi
t�1Þ.

Algorithm 3. Approximation of the posterior distribution
Pðdxtjy1:tÞ by a particle filter algorithm using Ranked Partitioned
Sampling, with M objects, using as weighting function for the ith
object its likelihood, integrating spatial constraints.
Input: Approximation of the posterior distribution at t � 1:

Pðdxt�1;ot�1jy1:t�1Þ ’
PN

n¼1wðnÞt�1 dot�1

oðnÞt�1

dxðnÞt�1
ðdxt�1Þ

Output: Approximation PN of the posterior distribution at t:
Pðdxt;ot jy1:tÞ

begin
1. Copy the particle cloud xðnÞt ;oðnÞt

� �
;wðnÞt

n oN

n¼1
¼

xðnÞt�1;o
ðnÞ
t�1

� �
;wðnÞt�1

n oN

n¼1

2. Generate the set of ranks of objects and the scenario: for
n = 1, . . . ,N do
� Generate oðnÞt � PðotjoðnÞt�1Þ according to Eq. (15)
� Compute the scenario sðnÞt :
8i ¼ 1; . . . ;M; si;ðnÞ

t ¼
PM

k¼1k di
ok;ðnÞ

t3. for i = 1, . . . , M do
� Resample xðnÞ0:t ;o

ðnÞ
0:t

� �
;1=N

n oN

n¼1
from

xðnÞ0:t ;o
ðnÞ
0:t

� �
;wðnÞt

n oN

n¼1
using the multinomial resampling

algorithm.
� for n = 1, . . . ,N do

� Let si

, si;ðnÞ
t

� Generate xsi ;ðnÞ
t � p xsi

t jx
si ;ðnÞ
t�1

� �
� Compute importance weights:

wðnÞt ¼ p ysi

t jx
si ;ðnÞ
t

� �
D A

xs1 :si�1 ;ðnÞ
t

; xsi ;ðnÞ
t�1

� 

l

xs1 :si�1 ;ðnÞ
t

xsi ;ðnÞ
t

� �

s:t:
XN

u¼1

wðuÞt ¼ 1

return PNðdxt ;ot jy1:tÞ ¼
PN

n¼1wðnÞt dot

oðnÞt

dxðnÞt
ðdxtÞ

6. Dealing with hidden objects

In a scene containing several objects, some of them may be oc-
cluded by other ones. In order to avoid misleading likelihoods, this
has to be considered in the tracking process.

There are many ways to deal with hidden objects. A possible
choice is to estimate a visibility vector and then conditioning the
likelihood [10,27]. The visibility for each object can have two states
(visible or not). The model includes the probability of each state, as
well as the transition probability from each state to the other. It is
also possible to simply consider a mixture likelihood with fixed
weights [42]. In [26], the visibility is determined by estimating
the 3D position of the object. As it has already been discussed in
Section 2.2, this problem may also be handled by considering a
data association vector [1–3].

In our approach, inspired by [12], we choose to implicitly deal
with the visibility problem, instead of modeling and estimating
explicitly probabilities of visibility states and their transitions.
The visibility is handled in the likelihood by considering scenarios
(i.e. ordered sequence of objects to be tracked) in which an object
is assumed to be more visible if it appears earlier in the scenario.
Thus the visibility itself is not modeled explicitly, which contrasts
with previous approaches. For each object in the scenario, regions
of the image occupied by previously processed objects in this
scenario are not considered for computing the likelihood of the
current object. This guarantees that, given that the previous objects
are correctly tracked, only the visible part of the current object will
be actually involved in the computations related to this object. This
will be experienced in Section 7.1. Note that assuming that a mea-
sure can come from at most one object can be false in cases of ob-
jects which are close to each other: in such cases, the extracted
measures and their association to objects also depend on the reso-
lution of the sensor.

The different approaches do not exclude each other, and it is for
instance possible to integrate a vector of visibility into our Ranked
Partitioned Sampling, by adapting the distribution for generating
scenarios of Eq. (16), and conditioning it by the vector of visibility.
Nevertheless, the advantage of an implicit modeling is that it does
not require to increase the state vector dimension.
7. Experimental results

We propose three experiments, on various image sequences,
that will show:

� the interest of the Rank Partitioned Sampling (RPS), associated
with the notion of implicit visibility given by the scenario, by
comparing it with the Branched Partitioned Sampling (BPS)
(Section 7.1);
� the stability of RPS when all possible scenarios seem to be

equivalent (Section 7.2);
� the interest of RPS by comparing it with Partitioned Sampling

(PS) (Section 7.3);
� the interest of fuzzy spatial constraints by comparing the

results with those obtained without constraints (Sections 7.2
and 7.3).

7.1. People tracking

The goal of this first experiment is to track people moving in an
indoor environment (Fig. 5). We consider a public sequence [43],
from which we extracted 280 frames where three pedestrians walk
and occult each other. Here we consider that their trajectories are
independent from each other, hence we do not model any spatial
constraint. The primary aim of this experiment is to test the behavior
of RPS, in particular the importance of the implicit non visibility, and
to compare the results with those obtained with BPS, that is an exten-
sion of PS dealing with occlusions between objects (see Section 3.3).

The objects (persons) to track are represented by vertical sur-
rounding rectangles with fixed size and orientation. Let
xi

t ¼ ðxi
t ; y

i
tÞ

T be the unknown state of object i (a person), with
ðxi

t ; y
i
tÞ

T the 2D coordinates of its center. The dynamics is a random
walk, i.e. xi

t ¼ ftðxi
t�1;vi

tÞ ¼ xi
t�1 þ vi

t with vi
t a white Gaussian noise,



Fig. 5. Some frames from the People sequence [43].
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with diagonal covariance matrix r2
x ¼ r2

y ¼ 42. To assess the stabil-
ity of the approach, we considered three transition matrices

Q 1
a ¼

0:8 0:15 0:05
0:1 0:8 0:1

0:05 0:15 0:8

2
64

3
75

Q 2
a ¼

0:5 0:35 0:15
0:25 0:5 0:25
0:15 0:35 0:5

2
64

3
75 Q 3

a ¼
0:1 0:2 0:7

0:45 0:1 0:45
0:7 0:2 0:1

2
64

3
75 ð21Þ

Matrix Q1
a allows an object to be considered in the same order, from

one frame to another. This is an example where the transition ma-
trix is not symmetric. For intermediate ranks 1 < k < M, it is natural
to define equal probabilities for the transition to rank k � i or to
rank k + i, with i < min (k, M � k � 1), thus giving an object the same
chance to gain or loose ranks in the scenario. However, this is not
true for the extreme ranks that have less possibilities to change
rank. Therefore we increase their probability to gain (for the last ob-
ject in the scenario) or loose (for the first object in the scenario)
ranks. Matrix Q2

a adds flexibility by defining less contrasted coeffi-
cients (values on the diagonal are lower that those in Q1

a while val-
ues off diagonal are higher). This could be useful when occulation
statuses change quickly. We expect that this should not alter too
much the quality of the results. Matrix Q3

a supports an object to
shift its processing order. It means that visible objects that are com-
puted first are likely to be considered farther and hence hidden at
the following step. This should decrease the performance of the
method since it corrupts the order of visibility of the objects.

For the BPS, we model a visibility vector vt ¼ ðv1
t ; . . . ;vM

t Þ, with
vi

t ¼ 1 meaning that the object i is visible, and 0 otherwise. The
transition probability from state visible to state hidden,
pðvi

t ¼ 0jvi
t�1 ¼ 1Þ; 8i ¼ 1; . . . ;M, is fixed to 0.2, and the transition

probability from state hidden to state visible to 0.5. These probabil-
ities have been fixed empirically, in a way that they give priority to
the state visible, although being flexible enough to deal with sud-
den occlusions. For the RPS, we implicitly consider the visibility
Fig. 6. Tests on the log-likelihood in the case of partial occlusion in the People sequence. (
occluded by the person in the blue one. (b) Likelihood of the person in the green rectang
region are not taken into account). Red regions indicate high likelihood values, and blac
of an object by its position in the processing order (i.e. the objects
which are visible are ranked first in the scenario), hence no spatial
constraint is necessary for this first experiment. For both methods,
visible objects are considered first, although in the RPS the visibil-
ity vector is not modeled explicitly since the scenario vector deter-
mines the visibility of an object (see Section 6). Then, particles with
a correct scenario will be more likely duplicated than the other
ones.

The likelihood of an object is defined from the distance between
a color model histogram and a candidate histogram as in [44].
However, only the visible part of the object is considered to avoid
penalizing hidden or partially hidden objects (parts of objects
overlapping with previously processed objects in the scenario are
considered as hidden). Hence the visible part of an object corre-
sponds to the region which has no intersection with previously
processed objects.

Let �ai
t denote the set of pixels covered by the rectangle sur-

rounding object i at t, defined by its state xi
t ;h

�
i ¼ h�i ðuÞ

� �U
u¼1 the

learned histogram model for object i (computed in the first frame
where the object has been manually segmented), and
h�BG ¼ h�BGðuÞ

� �U
u¼1 the histogram model of the background (com-

puted in a region of interest manually defined in the first frame),
and u the index of the bin of an U-length histogram. The likelihood
can be written as:

p ysk
t

t jx
sk

t
t ;x

s1
t :sk�1

t
t

� �
¼ p ysk

t
t j�a

sk
t

t ¼ �ask
t

t n [k�1
h¼1�a

sh
t

t

n o� �
/ exp �k d2 h�sk

t
; h �ask

t
t

� �h i
� d2 h�BG; h �ask

t
t

� �h i� �� �
ð22Þ

with k = 30 empirically fixed, d2 the Bhattacharyya distance and �ask
t

t

the set of visible pixels of object of index sk
t , determined by already

processed objects of indices sh
t

� �k�1
h¼1. An example of the likelihood is

given in Fig. 6. When we wrongly consider that an object is always
visible (Fig. 6b), the obtained values at the true position of the ob-
ject are lowered, because of the presence of another object occlud-
a) Test image, in which we track the person indicated by a green rectangle while it is
le without using any mask. (c) Likelihood using a mask (pixels belonging to the blue
k ones correspond to the maximal value of the likelihood.
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ing it. Therefore the obtained weights will favor off-centered loca-
tions, that actually contain a part of the real object. In Fig. 6c, in
which we consider that the blue object is processed first, and thus
that it is more visible than the green object, this latter does not take
into account pixels belonging to the blue object, which leads to a
better localization of the high density values of the likelihood.

We performed the tracking using N = 500 particles. Scores are
averaged over 20 runs. For Q1

a;Q
2
a and Q 3

a, we obtained a mean
RMSE of 17.9, 18.7 and 22.4, respectively. With the PS filter, a mean
RMSE of 21.6 was obtained. First, differences observed using Q1

a
and Q2

a are very reduced and not really significant. This shows
the stability of the method. However, we can observe that experi-
mental results with Q1

a are better than the ones with Q 2
a and Q 3

a.
This is consistent with the intuition that visible objects at a certain
time are likely to remain visible at the next step. This remark also
explains the poor results obtained with Q3

a, which was expected
since its coefficients are not relevant for this application. Finally,
the two first matrices led to better results than the PS. Tracking re-
sults obtained by the RPS using Q 1

a and by the PS are illustrated in
Fig. 7. Rectangles in red correspond to the estimation of objects (i.e.
the Monte Carlo expected value of their center). As mentioned in
Section 3.3, in the BPS, the particles may be divided into M! sets,
which may maintain scenarios where the visibility hypotheses
are wrong. Moreover, the visibility vector is not well adapted in
the case where the number of objects is greater than two, since
(a)

(b)
Fig. 7. People tracking results at different times. (a) BPS, (b) RPS. The last on
it does not solve anymore the data association problem. These
two points explain the differences in the results obtained by the
BPS and the RPS (see e.g. second and last images). Fig. 8c and d
show the root mean square errors (RMSE) for each tracked person
obtained by BPS and RPS, respectively. The error is computed as the
root of the average over time of the square difference between the
estimated value of the state and its true value. Overall RPS per-
forms better than BPS. Fig. 8b presents the posterior probabilities
obtained by the RPS for a person to be considered first in the pro-
cessing order induced by ot, where a low probability indicates that
the person is likely to be partially hidden. The probabilities esti-
mated for example at times 24, 99, 205, and 212 are consistent
with the sequence (Fig. 7). This is observed for instance at times
205, 212 and 259 of Fig. 7b, in which person 3 is hiding person
2, who is hiding person 1. Then, person 3 moves away, when per-
son 2 is still hiding person 1, and this is reflected consistently by
the change in probabilities displayed in Fig. 8b, which ranks person
3 first, before favoring person 2 at time 212.
7.2. Ant tracking

In the second experiment, we propose to track ants in a top-
view sequence (Fig. 9). This test sequence has been successfully
studied in [14], using a MCMC-Based particle filtering approach,
and also in a geometry-based particle filter [45]. It contains 750
e better deals with occlusions, see for example times 24, 212, and 259.



(a) (b)

(c) (d)
Fig. 8. (a) Indices of the persons present in the scene, (b) posterior probabilities obtained by RPS for a person to be considered first in the processing order, (c) RMSE for BPS
and (d) RMSE for RPS (proposed approach).

Fig. 9. Some frames of the Ant sequence [14,45].
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frames in which 4–8 ants are moving. Ants are entering and leaving
the field of view by a hole in the center of the images, simulating
the process of born and death of ants. The number M of ants can
then vary over time, but is supposed to be known in each image.
Thanks to the position of the camera there is no occlusion, and
we exploit this hypothesis by modeling a spatial constraint of
exclusion.

As in the first example, objects are represented by rectangles
with fixed size (12 � 40 pixels), but their orientation may vary.
The state of object i is defined as xi

t ¼ ðxi
t ; y

i
t ; h

i
tÞ

T , where ðxi
t ; y

i
tÞ

T de-
notes the position of the rectangle surrounding the object in the 2D
image (center of the rectangle) and hi

t its orientation. Dynamics of
position and orientation are random walks. The position is subject
to a Gaussian white noise, with a diagonal covariance matrix with
r2

x ¼ r2
y ¼ 112 (those values are slightly higher than those used in

[14] since this last method may present a more robust simulation
process by using a MCMC method). The noise for orientation is also
a Gaussian white one, with variance r2

h ¼ 0:32. The transition ma-
trix Qa is set to:
Qa ¼

0:5 0:2 0:1 0:07 0:05 0:03 0:03 0:02
0:15 0:43 0:15 0:1 0:07 0:05 0:03 0:02
0:09 0:14 0:39 0:14 0:09 0:07 0:05 0:03
0:06 0:085 0:14 0:39 0:14 0:085 0:06 0:04
0:04 0:06 0:085 0:14 0:39 0:14 0:085 0:06
0:03 0:05 0:07 0:09 0:14 0:39 0:14 0:09
0:02 0:03 0:05 0:07 0:1 0:15 0:43 0:15
0:02 0:03 0:03 0:05 0:07 0:1 0:2 0:5

2
66666666666664

3
77777777777775
ð23Þ
Probabilities ðak;hÞðk;hÞ2f1;...;Mg2 have been manually defined, to give
flexibility in the rank transitions, and thus to favor the diversifica-
tion of hypotheses. This is the reason why the diagonal values are
not equal: it is natural to consider that ants processed in the middle
of the scenario at t � 1 have a high probability to change their rank,
while those processed at the beginning or at the end of the scenario
have less chances to change their rank. The precise values of these



(a) (b)
Fig. 10. (a) Decreasing function of the satisfaction degree of the spatial constraint of exclusion Blexclusion

~xl
t

ðxm
t Þ depending on the overlap area between xm

t and ~xl
t . (b) Spatial

constraint on the whole image, by considering three ants already processed (displayed in red), and an ant which orientation is superimposed on the constraint image, in
yellow. A low gray level indicates that the constraint is satisfied.

N. Widynski et al. / Computer Vision and Image Understanding 116 (2012) 1076–1094 1087
probabilities are obtained from the normalization. As the matrix de-
fined in Eq. (21), and for the same reasons, Qa is not symmetric.

We propose for this experiment to use an exclusion fuzzy spa-
tial constraint, considering that two ants cannot overlap by more
than 10% of their own areas, that an overlap of 5% is completely
acceptable, and that the degree of satisfaction of the constraint de-
creases between these two values. This is modeled as a fuzzy set on
Rþ, where the membership function lexclusion

~xl
t

ðxm
t Þ represents the de-

gree of satisfaction of the constraint as a function of the overlap be-
tween ~xl

t and xm
t (Fig. 10a). The probability density of the spatial

constraint is then defined as proposed in Section 4, from the fol-
lowing membership functions, with only one spatial constraint
(hence no N operator is needed here) and with w = min in Eq. (6):

l~xt
ðxm

t Þ ¼ m~xt ðxm
t Þ

c

m~xt ðxm
t Þ ¼ Bmexclusion

~xt
ðxm

t Þ

Bmexclusion
~xt

ðxm
t Þ ¼ w

L

l¼1

Blexclusion
~xl

t
ðxm

t Þ ¼ min
l¼1;...;L

Blexclusion
~xl

t
ðxm

t Þ

where L is the number of objects already processed at t.
Fig. 10(b) illustrates the spatial constraint of exclusion

Bmexclusion
~xt

ðxm
t Þ computed on the whole image, with respect to the
Fig. 11. Tests on the log-likelihood used in Ant sequence. (a) Test image, in which we aim
results by using the orientation of the yellow rectangle (superimposed on the likelihood
center of an object iðxi
t ; y

i
tÞ, by considering that three ants have al-

ready been processed.
The likelihood is derived from a simple background subtraction.

Let a�i
t be the set of pixels covered by the rectangle of ant i at instant

t, IBG:X ? [0, 255] the gray level background image (image of con-
secutive frames without ants), It: X ? [0, 255] the gray level image
at time t. The likelihood of ant i is written as:

pðyi
t jxi

tÞ / exp
k

P�ai
t

card �ai
t \ SnBG

� � !
ð24Þ

with k = 10 empirically fixed, P�ai
t

the number of pixels covered by
the set �ai

t; SnBG ¼ fp; jIBGðpÞ � ItðpÞj > T; p 2 Xg the set of pixels
covered by all the pixels that differ from up to T from the
background (here T = 20). The obtained likelihood if shown in
Fig. 11, with four ants. As this likelihood is the same for all the ants,
an exclusion constraint is necessary to avoid a confusion between
them.

Fig. 12 shows results using RPS with and without spatial con-
straints, and PS with spatial constraints. Estimated positions of
the ants are represented in red. N = 500 particles were used for this
sequence of 750 frames. The benefit of using a simple spatial con-
at finding the ant represented in a yellow rectangle in the other images. Obtained
) with an angle (in radian) of h. Red regions correspond to high likelihood values.



Fig. 12. Ant tracking results. (a) RPS without spatial constraints (blue arrows show ants that are not correctly tracked). (b) PS with spatial constraints. (c) RPS with spatial
constraints. All ants are correctly tracked in (b) and (c).
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Fig. 14. Image from hand sequence, in which we want to constrain the spatial
location and orientation of the middle finger, when the other fingers have already
been processed and their state estimated.

Fig. 13. Frames from hand sequence.
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straint is very clear here (several ants are not tracked without spa-
tial constraints, while they are successfully tracked with such con-
straints). PS and RPS provide comparable results since all possible
processing orders lead to almost identical results. This shows that
RPS performs as well as PS when the order does not significantly
matter and when the number of objects is small enough to not in-
duce an impoverishment effect.

7.3. Hand tracking

We finally consider a problem of tracking articulated objects
(fingers of a hand) on a 800 frame sequence that was acquired to
illustrate the main features of the proposed approach. The diffi-
culty of this application is that fingers may be partially or totally
hidden (Fig. 13). We propose to track the hand and its fingers by
preserving a global consistency of the shape using fuzzy spatial
constraints. The global form of the constrained estimation provides
a good estimation of the central position and angle of all the fin-
gers, even if they are partially hidden, as will be shown next.

We illustrate the proposed approach on the right hand (this is
important to mention because the relative positions of its fingers
depend on the considered side). Each finger shape is fixed and rep-
resented by a vector of 6 2D-control points, located on the basis of
the finger, on the middle and on the fingertips. The fingers are con-
sidered as rigid, and thus the control points are fixed. The state of
object i; xi

t ¼ ðxi
t ; y

i
t ; h

i
tÞ

T , contains the coordinates of its center
ðxi

t ; y
i
tÞ

T and its orientation hi
t . Dynamics of position and orientation

are random walks. A white Gaussian noise model is considered, and
a diagonal covariance matrix with variances r2

x ¼ r2
y ¼ 82 for posi-

tion, and r2
h ¼ 0:12 for orientation. The transition matrix Qa is set to:

Qa ¼

0:6 0:25 0:1 0:05
0:2 0:5 0:2 0:1
0:1 0:2 0:5 0:2

0:05 0:1 0:25 0:6

2
6664

3
7775 ð25Þ

Here again, this matrix permits a flexible change in position in the
order of processing, and makes the tracking robust to the change of
visibility of fingers.

We propose to use fuzzy spatial constraints to overcome this
problem and guarantee a good spatial consistency in the tracking
results. Although they could be automatically learned, we consider
here fixed spatial relations between the fingers. These constraints
can be binary relations (distance and orientation), or higher order
relations such as alignment. In our experiments, we defined:

� A binary constraint on the relative orientation, denoted by Blangle:
the angle is considered as a linguistic variable that can take here
two values, namely approximately �p/8 and approximately p/8
(which are considered as ‘‘ideal’’ values). The semantics of these
values are defined by fuzzy sets in the domain of angles, with
trapezoidal membership functions centered at �p/8 and p/8
respectively, and with a support of length p/4 (denoted by
Bl�p/8 and Blp/8). This means that if two neighbor fingers are
oriented at p/8 from each other, the degree of satisfaction of
the constraint will be 1, and it will be 0 if they form an angle
larger than 3p/8, with decreasing values in between.
� A binary constraint on the distance, denoted by Bldistance. Again

two linguistic values are considered: close to and far from,
whose semantics are defined as membership functions Blclose to

and Blfar from. The parameters of these functions are set accord-
ing to the distance between fingers in the images.
� One ternary or quaternary (depending on the number of objects

already processed) constraint of alignment Qlalignment: a linear
regression is computed from the positions of the base of at least
two already processed fingers, and we consider that fingers can-
not move away from the regression line more than a fixed dis-
tance threshold. This is modeled as a decreasing membership
function with respect to the distance to the regressing line.
� One binary constraint of exclusion Blexclusion, defined as in Sec-

tion 7.2, with no overlap between fingers larger than 50%
allowed. Note that in this experiment, we consider that fingers
cannot cross. Otherwise, the exclusion constraint defined here
would certainly be too strong. A solution would be to define
an interaction constraint that allows object crossing while it
forbids overlaps. It could be done using the shape and the orien-
tation of the object.

The operator N involved in the fusion of constraints (Eq. (5)) is
defined as the minimum. Its conjunctive behavior allows favoring
solutions where all constraints are satisfied. The operator w in
Eq. (6) is also the minimum. Let us now detail an example of fuzzy
spatial constraint formulation expressed for the state of the middle
finger xm

t , assuming that the other fingers (denoted by xin
t ;x

ri
t and xli

t

for the index finger, the ring finger and the little finger, respectively)
have already been processed in the scenario:

l~xt
ðxm

t Þ ¼ m~xt ðxm
t Þ

c

m~xt ðxm
t Þ ¼ N

K

k¼1
mk

~xt
ðxm

t Þ

¼ min Bmdistance
~xt

ðxm
t Þ; Bmangle

~xt
ðxm

t Þ; Qmalignment
~xt

ðxm
t Þ; Bmexclusion

~xt
ðxm

t Þ
� �

Bmdistance
~xt

ðxm
t Þ ¼ w

L

l¼1

Bldistance
~xl

t
ðxm

t Þ

¼ min Blclose to
~xri

t
ðxm

t Þ; Blclose to
~xin

t
ðxm

t Þ; Blfar from
~xli

t
ðxm

t Þ
� �



Þ

Fig. 15. Fuzzy spatial representation of the distance constraint for the hand, with respect to the middle finger. (a) Relation close to the index finger. (b) Relation close to the ring
finger. (c) Relation far from the little finger. (d) Global constraint resulting from the conjunctive fusion.

Fig. 19. Spatial constraints on (a) distance, (b) exclusion and (c) alignment, by consid
constraint image, and in blue in the final result image). (d) Fusion result for the position o
obtained.

Fig. 16. Fuzzy spatial representation of the orientation constraint with respect to the middle finger. (a) Relation at approximately �p/8 of the index finger. (b) Relation at
approximately p/8 of the ring finger. (c) Relation at approximately p/8 of the little finger. (d) Global constraint resulting from the conjunctive fusion.

Fig. 17. Fuzzy spatial representation of the exclusion constraint, with respect to the middle finger. The finger’s orientation is superimposed in yellow on the images of
constraints. Exclusion principles seen from (a) index finger, (b) ring finger, (c) little finger. (d) Global exclusion constraint after fusion.

Fig. 18. Fuzzy spatial representation of the alignment constraint, with respect to
the middle finger. Positions of index, ring and little fingers have already been
estimated, and are used to compute a regression line, from which a distance
function is defined to constrain the position of middle finger.
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Bmangleðxm
t ; ~xtÞ ¼ w

L

l¼1

Blangle
~xl

t
ðxm

t Þ

¼min Bl�p=8
~xli

t
ðxm

t Þ; Bl�p=8
~xri

t
ðxm

t Þ; Blp=8
~xin

t
ðxm

t Þ
� �

Qmalignment
~xt

ðxm
t

¼ w
L

l1¼1
w
L

l2¼l1þ1
w
L

l3¼l2þ1

Qlalignment

~x
l1
t ;

~x
l2
t ;

~x
l3
t

ðx�t Þ

¼ Qlalignment
~xli

t ;
~xri

t ;
~xin

t
ðxm

t ÞBmexclusion
~xt

ðxm
t Þ ¼ w

L

l¼1

Blexclusion
~xl

t
ðxm

t Þ

¼min Blexclusion
~xli

t
ðxm

t Þ; Blexclusion
~xri

t
ðxm

t Þ; Blexclusion
~xin

t
ðxm

t Þ
� �

Note that it is possible to optimize the computations by taking into
account dependencies between constraints. In the previous
example, the computation of the exclusion between the middle
finger and the index finger and of the orientation are not useful,
ering the finger orientation (its representation if superimposed in yellow in the
f middle finger, which shows that only a restricted region satisfying all constraints is



Fig. 20. Tests on the log-likelihood used for Hand sequence. (a) Test image, in which we want to track the middle finger in green. Results using the shape represented in yellow
with an angle (in radian, the right value being �0.07) of h. Red regions correspond to high likelihood values.
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because the ring finger (processed before) already satisfied the con-
straints imposed by the index finger.

Let us illustrate the spatial constraints in the image domain, on
a representative frame of the sequence (see Fig. 14). The spatial
(a)

(c
Fig. 21. Shape errors for hand tracking. (a) RPS without spatial constrai
constraint on distance is illustrated in Fig. 15. As before, a dark va-
lue indicates that the constraint is satisfied. The goal of the dis-
tance relation is to constrain the central position of the middle
finger. Using the formulated constraints for the index finger
(b)

)
nts. (b) PS with spatial constraints. (c) RPS with spatial constraints.



(a)

(b)

(c)
Fig. 22. Hand tracking results at different instants (tracking errors are indicated by blue arrows). (a) RPS without spatial constraints. (b) PS with spatial constraints. (c) RPS
with spatial constraints.
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(Fig. 15a), the ring finger (Fig. 15b), and the little finger (Fig. 15c),
the fusion is represented in the image domain in Fig. 15d. Note that
this spatial representation just aims at illustrating the constraints,
and do not need to be actually computed (except for the exclusion
principle). The constraints are not evaluated on the whole set of
pixels, but just on a specific realization of the middle finger state xm

t .
The spatial constraint on relative orientation is illustrated in
Fig. 16. This constraint restricts the possible orientations of the
finger. The fusion illustrated in Fig. 16d is actually computed in
the angle domain, and not in the spatial one.

The spatial constraint of exclusion is illustrated in Fig. 17. For
this illustration, it is necessary to fix the orientation, because the
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constraint depends on both the orientation and the central position
of the finger. The considered orientation is then represented by an
hypothetic state (represented in yellow1) superimposed on the
images of constraints.

The spatial constraint of alignment is illustrated in Fig. 18. The
result is directly obtained, without any fusion process, because it is
a quaternary operator. A ternary operator would have been used if
the positions of just two fingers would be known. When less than
two fingers have already been processed, this constraint is not con-
sidered in the decision process.

The resulting fusion of the distance, exclusion and alignment
constraints, using a fixed orientation, is shown in Fig. 19.

It would have been possible to define other more complex or
more robust spatial constraints, such as a finer alignment con-
straint [46], and, instead of using an exclusion concept, we could
have used a model of the concept of ‘‘cross’’ [47]. However, the
constraints defined in this experiment permit to represent a lot
of possible impossible configurations, while remaining simple to
compute. They proved to be sufficient to illustrate the interest
and the power of the proposed approach.

The likelihood is derived from the maximum gradient magni-
tude along the normals at the control points of the B-spline model-
ing a finger (this is a simplified version of the one proposed in [48]):

pðyi
t jxi

tÞ / exp
k

Pai

XPai

p¼1

max
x2nai

p

�!r ItðxÞ �Nðx;r2Þ
� �0

B@
1
CA ð26Þ

wherer and ⁄ are respectively gradient and convolution operators,
ai

p the pth control point of the B-spline of finger i, of length Pai and
defined by xi

t; nai
p

�! the normal at point ai
p; ItðxÞ the gray level value at

point x of image It at instant t, k = 30 a constant empirically fixed,
and Nðx;r2Þ a Gaussian distribution of mean x and fixed variance
r2 = 0.1 to make the observation robust to noise. Fig. 20 shows
the corresponding likelihoods. As we want to estimate the position
and orientation of the fingers, it is necessary for the likelihood to be
robust to both parameters. High values of the likelihood (in red) are
observed also for the other fingers, and therefore the tracking has to
be constrained, to avoid the tracked finger to be attracted towards
other local maxima.

The shape errors obtained for index, middle, ring and little fin-
gers with RPS without spatial constraints, PS with spatial con-
straints, and RPS with spatial constraints are given in Fig. 21,
with N = 2000 particles. An overlapping ratio is computed as
the number of common points between the estimated shape
and the ground truth, divided by the maximum of their surfaces.
Then shape errors are computed as 1 minus this overlapping ra-
tio. Results using a simple PS strategy were generated using a
random sequence order (in this particular sequence, fixed se-
quence order did not provide quite as good results). RPS with
spatial constraints (Fig. 21c) leads to better results than the
other methods (Fig. 21a and b), giving less than 36% of shape
overlapping errors for all the fingers. The results for the corre-
sponding shapes are displayed in Fig. 22 and have been obtained
with N = 2000 particles. RPS without spatial constraints fails as
soon as a finger is partially hidden, or close to another one. In
fact, such a situation generates an ambiguity, because there are
several modes in the likelihood (see for example Fig. 22a at time
432). However, RPS provides better results than those obtained
with PS thanks to the estimation of the scenario, which allows
estimating first fingers that are trusted, i.e. the visible ones,
and then the other ones, which are then more constrained by
1 For interpretation of color in Figs. 1, 3–22, the reader is referred to the web
version of this article.
the fuzzy spatial relations (see from t = 529 in Figs. 22b and c,
and 21b and c). This is particularly visible at the end of the se-
quence (t P 770), where the index finger is wrongly estimated by
PS, and is localized over the middle finger. Using fuzzy spatial
constraints conditions the estimation of the position of the mid-
dle finger, that is ‘‘blocked’’ between the real middle and ring fin-
gers (see the last image of Figs. 22b and 21b), which is
consistent with the configuration of a hand. Results obtained
with PS and RPS with spatial constraints are variable, because
of the stochastic nature of the algorithm, and the difficulty of
simulation of the sequence (four objects, high constraints on
their spatial conditions). However we observed a systematic
superiority of RPS over PS.

8. Conclusion

The method proposed in this paper includes two contributions.
First, we introduce fuzzy spatial constraints into a multiple object
tracking based on particle filtering. This novel information allows
us to easily handle constraints between objects, such that on the
right of, behind, aligned with, etc. in a unified framework. By model-
ing unary, binary, or n-ary fuzzy operators, we can evaluate the
possibility of a whole configuration of several objects. This is mod-
eled by a fuzzy set that evaluates the degree of satisfaction of a set
of constraints, and is then embedded into a probabilistic frame-
work to estimate the probability of an object configuration at a
time t. As a second contribution, the multiple object particle filter
uses a Ranked Partitioned Sampling strategy, which, as the Parti-
tioned Sampling [10], tackles the problem of dimensionality by
sequentially performing a weighted resampling step in single ob-
ject state spaces. Moreover, the simulation order involved in the
proposed RPS is adaptive, which makes the tracking more robust
and alleviates the impoverishment effect. Since the Ranked Parti-
tioned Sampling just shifts the simulation order of the objects, it
performs the tracking with a computation time identical to the
PS one. Concerning the fuzzy relations, it depends on the nature
of the spatial constraint. For example, computing an orientation
constraint between objects is straightforward since this is just a
difference of angles, whereas computing an exclusion constraint
requires to label the objects in an image. This can still be done effi-
ciently and a carefully designed implementation should not suffer
from computation time drawbacks.

A direct consequence of adding constraints during the likeli-
hood computation rather than during the simulation (which is
a common choice in the literature) is that the likelihood can
be highly picked, which increases the variance of the particle
weights. A simple solution should be to slightly relax these con-
straints to avoid a possible divergence of the filter. A most
sophisticated one, that is not always possible, is to generate
the particles conditionally to the constraints. This solution is
provided by our model (Eq. (18)), but not considered in our tests
because constraints were too complex.

The fuzzy spatial constraint modeling could deal with more
complex information, for example those often used in scene
description [17,49–51]. We could also automatically learn the
parameters of these constraints [52]. A last improvement would
be to consider the number M of objects as a random variable
[3,53].

Appendix A. Complement about Eq. (16)

Proposition 1. Eq. (16) defines a probability distribution.
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Proof. Let us prove that the sum over all possibilities is equal to 1:
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