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Belief revision of knowledge bases represented by a set of sentences in a given logic has 
been extensively studied but for specific logics, mainly propositional, and also recently 
Horn and description logics. Here, we propose to generalize this operation from a model-
theoretic point of view, by defining revision in the abstract model theory of satisfaction 
systems. In this framework, we generalize to any satisfaction system the characterization 
of the AGM postulates given by Katsuno and Mendelzon for propositional logic in terms 
of minimal change among interpretations. In this generalization, the constraint on syntax 
independence is partially relaxed. Moreover, we study how to define revision, satisfying 
these weakened AGM postulates, from relaxation notions that have been first introduced in 
description logics to define dissimilarity measures between concepts, and the consequence 
of which is to relax the set of models of the old belief until it becomes consistent 
with the new pieces of knowledge. We show how the proposed general framework 
can be instantiated in different logics such as propositional, first-order, description and 
Horn logics. In particular for description logics, we introduce several concrete relaxation 
operators tailored for the description logic ALC and its fragments EL and ELU , discuss 
their properties and provide some illustrative examples.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Belief change, the process that makes an agent’s beliefs evolve with newly acquired knowledge, is one of the classical but 
still challenging problems in artificial intelligence. It is gaining more and more interest these days, due to the emergence of 
new logical-based knowledge representation frameworks enjoying good complexity properties, allowing them to tackle large 
scale knowledge bases, and to reason on massive datasets. Among these logical frameworks, one can mention Description 
Logics (DLs) and Horn Clause theories. Description logics, for instance, are now pervasive in many knowledge-based repre-
sentation systems such as ontological reasoning, semantic web, scene understanding, cognitive robotics, to mention a few. 
In all these domains, the expert knowledge is not fixed, but rather a flux evolving over time, hence requiring the definition 
of rational change operators.
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Studying the rationality of belief change operators, when knowledge bases are logical theories, i.e. sets of sentences in 
a given logic, goes back to the seminal work of Alchourròn, Gardenfors and Makinson [1], that gave birth to what is now 
known as AGM theory. Three change operations are studied within this framework, expansion, contraction and revision. Belief 
expansion consists in adding new knowledge without checking consistency, while both contraction and revision consist in 
consistently removing and adding new knowledge, respectively. We focus in this paper on belief revision.

Although defined in the abstract framework of logics given by Tarski [40] (so called Tarskian logics), postulates of the 
AGM theory make strong assumptions on the considered logics. Indeed, in [1] the considered logics have to be closed under 
the standard propositional connectives in {∧, ∨, ¬, ⇒}, to be compact (i.e. inference depends on a finite set of axioms), 
and to satisfy the deduction theorem (i.e. entailment and implication are equivalent). While compactness is a standard 
property of logics, to be closed under the standard propositional connectives is more questionable. Indeed, many logics 
(called hereafter non-classical logics) such as description logics, equational logic or Horn clause logic, widely used for various 
modern applications in computing science, do not satisfy such a constraint. Recently, in many works, belief change has been 
studied in such non-classical logics [12,17,34,35]. For instance, Ribeiro et al. in [35] studied contraction at the abstract level 
of Tarskian logics, and recently Zhuang et al. in [42] proposed an extension of AGM contraction to arbitrary logics. The 
adaptation of the AGM postulates for revision for non-classical logics has been studied but only for specific logics, mainly 
description logics [16,17,28,29,31,33,41] and Horn logics [11,43]. The reason is that revision can be abstractly defined in 
terms of expansion and retraction following the Levi identity [23], but this requires the use of negation, which rules out 
some non-classical logics that do not consider this connective [34].

The AGM postulates were interpreted in terms of minimal change in [22], in the sense that the models of the revision 
should be as close as possible, according to some metric, to the models of the initial knowledge set. However, to the best 
of our knowledge, the generalization of the AGM theory with minimality criteria on the set of models of knowledge bases 
has never been proposed. The reason is that semantics is not explicit in the abstract framework of logics defined by Tarski.

We propose here to generalize AGM revision but in the abstract model theory of satisfaction systems, which formalizes 
the intuitive notion of logical systems, including syntax, semantics and the satisfaction relation. This notion was introduced 
in [18] under the name of “rooms”, and then of “satisfaction systems” in [38]. See also [26]. Then, we propose to generalize 
to any satisfaction system the approach developed in [22] for propositional logic and in [30] for description logics. In this 
abstract framework, we will also show how to define revision operators from the relaxation notion that has been introduced 
in description logics to define dissimilarity measures between concepts [14,15]. The main idea is to relax the set of models 
of the old belief until it becomes consistent with the new pieces of knowledge. This notion of relaxation, defined in an 
abstract way through a set of properties, turns out to generalize several revision operators introduced in different contexts 
e.g. [9,20,25,29]. This is another key contribution of our work.

To concretize our abstract framework, we provide examples of relaxations in propositional logics, first order logics, and 
Horn logic. The case of description logics (DLs) is more detailed. This is motivated, as mentioned above, by their broad scope 
of applications, including reasoning on large web data.

The paper is organized as follows. Section 2 reviews some concepts, notations and terminology about satisfaction systems 
which are used in this work. In Section 3, we adapt the AGM theory in the framework of satisfaction systems, and then give 
an abstract model-theoretic rewriting of the AGM postulates. We then show in Section 3.2 that any revision operator satis-
fying such postulates accomplishes an update with minimal change to the set of models of knowledge bases. In Section 3.3, 
we introduce a general framework of relaxation-based revision operators and show that our revision operators lead to faith-
ful assignments and then also satisfy the AGM postulates. In Section 4, we illustrate our abstract approach by providing 
revision operators in different logics, including classical logics (propositional and first order logics) and non-classical ones 
(Horn and description logics). The case of DL is further developed in Section 4.4, with several examples. Finally, Section 5 is 
dedicated to related works.

2. Satisfaction systems

Satisfaction systems [26] generalize Tarski’s classical “semantic definition of truth” [39] and Barwise’s “Translation Ax-
iom” [4]. For the sake of generalization, sentences are simply required to form a set. All other contingencies such as inductive 
definition of sentences are not considered. Similarly, models are simply seen as elements of a class, i.e. no particular struc-
ture is imposed on them.

2.1. Definition and examples

Definition 1 (Satisfaction system). A satisfaction system R = (Sen, Mod, |=) consists of

• a set Sen of sentences,
• a class Mod of models, and
• a satisfaction relation |=⊆ Mod × Sen.



162 M. Aiguier et al. / Artificial Intelligence 256 (2018) 160–180
Let us note that the non-logical vocabulary, so-called signature, over which sentences and models are built, is not speci-
fied in Definition 1.1 Actually, it is left implicit. Hence, as we will see in the examples developed in the paper, a satisfaction 
system always depends on a signature.

Example 1. The following examples of satisfaction systems are of particular importance in computer science and in the 
remainder of this paper.

Propositional Logic (PL) Given a set of propositional variables �, we can define the satisfaction system R� = (Sen, Mod,

|=) where Sen is the least set of sentences finitely built over propositional variables in � and Boolean connectives 
in {¬, ∨}, Mod contains all the mappings ν : � → {0, 1} (0 and 1 are the usual truth values), and the satisfaction 
relation |= is the usual propositional satisfaction.

Horn Logic (HCL) A Horn clause is a sentence of the form � ⇒ α where � is a finite (possibly empty) conjunction of 
propositional variables and α is a propositional variable. The satisfaction system of Horn clause logic is then 
defined as for PL except that sentences are restricted to be conjunctions of Horn clauses.

First Order Logic (FOL) and Many-sorted First Order Logic We detail here only the many-sorted variant of FOL, FOL being 
a particular case. Signatures are triplets (S, F , P ) where S is a set of sorts, and F and P are a set of functions
and a set of predicate names, respectively, both with arities in S∗ × S and S+ respectively (S+ is the set of all 
non-empty sequences of elements in S and S∗ = S+ ∪ {ε} where ε denotes the empty sequence). In the following, 
to indicate that a function name f ∈ F (respectively a predicate name p ∈ P ) has for arity (s1 . . . sn, s) (respectively 
s1 . . . sn), we will note f : s1 × . . . × sn → s (resp. p : s1 × . . . × sn).

Given a signature � = (S, F , P ), we can define the satisfaction system R� = (Sen, Mod, |=) where:
• Sen is the least set of sentences built over atoms of the form p(t1, . . . , tn) where p : s1 × . . . × sn ∈ P and 

ti ∈ T F (X)si for every i, 1 ≤ i ≤ n (T F (X)s is the term algebra of sort s built over F with sorted variables in a 
given set X) by finitely applying Boolean connectives in {¬, ∨} and the quantifier ∀.

• Mod is the class of models M defined by a family (Ms)s∈S of sets (one for every s ∈ S), each one equipped 
with a function f M : Ms1 × . . . × Msn → Ms for every f : s1 × . . . × sn → s ∈ F and with an n-ary relation 
pM ⊆ Ms1 × . . . × Msn for every p : s1 × . . . × sn ∈ P .

• Finally, the satisfaction relation |= is the usual first-order satisfaction.
As for PL, we can consider the logic FHCL of first-order Horn Logic whose models are those of FOL and sentences 
are restricted to be conjunctions of universally quantified Horn sentences (i.e. sentences of the form � ⇒ α where 
� is a finite conjunction of atoms and α is an atom).

Description logic (DL) Signatures are triplets (NC , NR , I) where NC , NR and I are nonempty pairwise disjoint sets where 
elements in NC , NR and I are called concept names, role names and individuals, respectively.

Given a signature � = (NC , NR , I), we can define the satisfaction system R� = (Sen, Mod, |=) where:
• Sen contains2 all the sentences of the form C � D , x : C and (x, y) : r where x, y ∈ I , r ∈ NR and C is a con-

cept inductively defined from NC ∪ {
} and binary and unary operators in {_ � _, _ � _} and in {_c, ∀r._, ∃r._}, 
respectively.

• Mod is the class of models I defined by a set �I equipped for every concept name A ∈ NC with a set AI ⊆ �I , 
for every relation name r ∈ NR with a binary relation rI ⊆ �I ×�I , and for every individual x ∈ I with a value 
xI ∈ �I .

• The satisfaction relation |= is then defined as:
· I |= C � D iff CI ⊆ DI ,
· I |= x : C iff xI ∈ CI ,
· I |= (x, y) : r iff (xI , yI) ∈ rI ,
where CI is the evaluation of C in I inductively defined on the structure of C as follows:
· if C = A with A ∈ NC , then CI = AI ;
· if C = 
 then CI = �I ;
· if C = C ′ � D ′ (resp. C = C ′ � D ′), then CI = C ′I ∪ D ′I (resp. CI = C ′I ∩ D ′I );
· if C = C ′ c , then CI = �I \ C ′I ;
· if C = ∀r.C ′ , then CI = {x ∈ �I | ∀y ∈ �I , (x, y) ∈ rI implies y ∈ C ′I};
· if C = ∃r.C ′ , then CI = {x ∈ �I | ∃y ∈ �I , (x, y) ∈ rI and y ∈ C ′I}.

2.2. Knowledge bases and theories

Let us now consider a fixed but arbitrary satisfaction system R = (Sen, Mod, |=) (since the signature � is supposed 
fixed, the subscript � will be omitted from now on).

1 The set of logical symbols is defined in each particular logic, and does not depend on a theory.
2 The description logic defined here is better known under the acronym ALC.
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Notation 1. Let T ⊆ Sen be a set of sentences.

• Mod(T ) is the sub-class of Mod whose elements are models of T , i.e. for every M ∈ Mod(T ) and every ϕ ∈ T , M |= ϕ . 
When T is restricted to a formula ϕ (i.e. T = {ϕ}), we will denote Mod(ϕ), the class of model of {ϕ}, rather than 
Mod({ϕ}).

• Cn(T ) = {ϕ ∈ Sen | ∀M ∈ Mod(T ), M |= ϕ} is the set of semantic consequences of T .
• Let M ⊆ Mod. Let us note M∗ = {ϕ ∈ Sen | ∀M ∈ M, M |= ϕ}. Therefore, we have for every T ⊆ Sen, Cn(T ) = Mod(T )∗ . 

When M is restricted to one model M, M∗ will be equivalently noted M∗ .
• Let us note T riv = {M ∈ Mod | M∗ = Sen}, i.e. the set of models in which all formulas are satisfied. In PL and FOL, 

T riv is empty because the negation is considered. Similarly, the complementation is involved in the DL ALC , hence 
T riv is empty. In HCL, T riv only contains the unique model where all propositional variables have a truth value equal 
to 1. In FHCL, T riv contains all models M where for every predicate name p : s1 × . . . × sn ∈ P , pM = Ms1 × . . . × Msn .

Let us note that for every T ⊆ Sen, T riv ⊆ Mod(T ).
From the above notations, we obviously have:

Cn(T ) = Cn(T ′) ⇔ Mod(T ) = Mod(T ′). (1)

The two functions Mod(_) from P(Sen) into P(Mod) and _∗ from P(Mod) into P(Sen) form what is known as a Galois 
connection in that they satisfy the following properties: for all T , T ′ ⊆ Sen and M, M′ ⊆ Mod, we have (see [13] and the 
proof of Proposition 1 below)

(1) T ⊆ T ′ =⇒ Mod(T ′) ⊆ Mod(T )

(2) M ⊆M′ =⇒ M′∗ ⊆M∗
(3) T ⊆ Mod(T )∗
(4) M ⊆ Mod(M∗)

Definition 2 (Knowledge base and theory). A knowledge base T is a set of sentences (i.e. T ⊆ Sen). A knowledge base T is 
said to be a theory if and only if T = Cn(T ).

A theory T is finitely representable if there exists a finite set T ′ ⊆ Sen such that T = Cn(T ′).

Proposition 1. For every satisfaction system R, we have:

Inclusion ∀T ⊆ Sen, T ⊆ Cn(T );
Iteration ∀T ⊆ Sen, Cn(T ) = Cn(Cn(T ));
Monotonicity ∀T , T ′ ⊆ Sen, T ⊆ T ′ =⇒ Cn(T ) ⊆ Cn(T ′).

Proof. For the sake of completeness, let us first show that Mod is decreasing (Property 1): let us assume T ⊆ T ′ , then 
∀M ∈ Mod(T ′) we have ∀ϕ ∈ T , ϕ ∈ T ′ , and thus M |= ϕ . Hence M ∈ Mod(T ).

Let us now show that Cn is increasing (monotonicity property): let us assume T ⊆ T ′ , then ∀ϕ ∈ Cn(T ) we have ∀M ∈
Mod(T ′), M ∈ Mod(T ) since Mod is decreasing, and M |= ϕ . Hence ϕ ∈ Cn(T ′).

We have T ⊆ Mod(T )∗ (Property 3): indeed, ∀ϕ ∈ T we have ∀M ∈ Mod(T ), M |= ϕ by definition of Mod(T ). Hence 
ϕ ∈ Mod(T )∗ .

It is then easy to see that Cn is extensive (inclusion property) from the previous property and Cn(T ) = Mod(T )∗ .
Let us finally show that Cn is idempotent (iteration property): extensivity implies ∀T , Cn(T ) ⊆ Cn(Cn(T )). Since T ⊆

Mod(T )∗ and Cn is increasing, we have Cn(T ) ⊆ Cn(Mod(T )∗) = Cn(Cn(T )). �
Hence, satisfaction systems are Tarskian according to the definition of logics given by Tarski: a logic is a pair (L, Cn)

where L is a set of expressions (formulas) and Cn : P(L) → P(L) is a mapping that satisfies the inclusion, iteration and 
monotonicity properties [40]. Indeed, from any satisfaction system R we can define the following Tarskian logic (L, Cn)

where L = Sen and Cn is the mapping that associates to every T ⊆ Sen, the set Cn(T ) of semantic consequences of T .
Classically, the consistency of a theory T is defined as Mod(T ) �= ∅. The problem of such a definition of consistency is 

that its significance depends on the considered logic. Hence, this consistency is significant for FOL, while in FHCL it is a 
trivial property since each set of sentences is consistent because Mod(T ) always contains T riv which is non-empty. Here, 
for the notion of consistency to be more appropriate for our purpose of defining revision for the largest family of logics, we 
propose a more general definition of consistency, the meaning of which is that there is at least a sentence which is not a 
semantic consequence.

Definition 3 (Consistency). T ⊆ Sen is consistent if Cn(T ) �= Sen.

Proposition 2. For every T ⊆ Sen, T is consistent if and only if Mod(T ) \ T riv �= ∅.
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Proof. Let us prove that Cn(T ) = Sen iff Mod(T ) \T riv = ∅. Let us first assume that Mod(T ) \T riv = ∅. Therefore, this means 
that the only models that satisfy T are M such that M∗ = Sen (if they exist). Hence, we have Cn(T ) = Mod(T )∗ = Sen.

Conversely, let us assume that Cn(T ) = Sen. This means that every model M such that M∗ �= Sen does not belong to 
Mod(T ), and Mod(T ) \ T riv = ∅. �
Corollary 1. For every T ⊆ Sen, T is inconsistent is equivalent to Mod(T ) = T riv.

3. AGM postulates for revision in satisfaction systems

3.1. AGM postulates and weakened AGM postulates

The AGM postulates for knowledge base revision in satisfaction systems are easily adaptable. We build upon the model-
theoretic characterization introduced by Katsuno and Mendelzon (KM) [22] for propositional logic. Note, however, that in 
propositional logic, a belief base can be represented by a formula, and then the KM postulates exploit this property. This 
is no longer the case in our context, but we argue that the postulates are still appropriate, except the one on syntax inde-
pendence, as discussed next. Given two knowledge bases T , T ′ ⊆ Sen, T ◦ T ′ denotes the revision of T by T ′ , that is, T ◦ T ′
is obtained by adding consistently new knowledge T ′ to the old knowledge base T . Note that T ◦ T ′ cannot be defined as 
T ∪ T ′ because nothing ensures that T ∪ T ′ is consistent. The revision operator has then to minimally change T so that T ◦ T ′
is consistent. This is what the AGM postulates ensure.

Here we use the following weakened AGM postulates3:

(G1) If T ′ is consistent, then so is T ◦ T ′ .
(G2) Mod(T ◦ T ′) ⊆ Mod(T ′).
(G3) if T ∪ T ′ is consistent, then T ◦ T ′ = T ∪ T ′ .
(G5) Mod((T ◦ T ′) ∪ T ′′) ⊆ Mod(T ◦ (T ′ ∪ T ′′)).
(G6) if (T ◦ T ′) ∪ T ′′ is consistent, then Mod(T ◦ (T ′ ∪ T ′′)) ⊆ Mod((T ◦ T ′) ∪ T ′′).

In the literature such as in [22,30], an additional postulate concerns the independence of the syntax:

(G4) If Cn(T1) = Cn(T ′
1) and Cn(T2) = Cn(T ′

2), then Mod(T1 ◦ T2) = Mod(T ′
1 ◦ T ′

2).

This postulate states a complete independence of the syntactical forms of both the original knowledge base and the 
newly acquired knowledge. The problem with Postulate (G4) is that it is almost never satisfied when we want to preserve 
the structure of knowledge bases and then apply revision operators over the formulas that compose knowledge bases. 
Indeed, let us consider in the logic PL the following knowledge bases T1 = {p, q} and T2 = {q ⇒ p, q} over the signature 
{p, q}. Obviously, we have that Mod(T1) = Mod(T2) = {ν : p �→ 1, q �→ 1}. Let us consider the knowledge base T ′ = {¬q}. 
We have now that T1 ∪ T ′ (and then T2 ∪ T ′) is inconsistent. A way to retrieve the consistency is to replace in T1 and T2
the atomic formula q by ¬q. Hence, T1 ◦ T ′ = {p, ¬q} and T2 ◦ T ′ = {q ⇒ p, ¬q}. Then Mod(T1 ◦ T ′) = {ν : p �→ 1, q �→ 0}, 
Mod(T2 ◦ T ′) = {ν : p �→ 1, q �→ 0; ν ′ : p �→ 0, q �→ 0}, and Mod(T1 ◦ T ′) �= Mod(T2 ◦ T ′). This example shows that syntax 
independence may be too strong a requirement.

In [22], the authors bypass the problem by representing any knowledge base K (which is a theory in [22]) by a proposi-
tional formula ψ such that K = Cn(ψ). Hence, they apply their revision operator on ψ and not on K , and so they lose the 
structure of the knowledge base K .

A weaker form of this postulate could be written as:

(G’4) If Cn(T ′
1) = Cn(T ′

2), then Mod(T ◦ T ′
1) = Mod(T ◦ T ′

2),

which ensures a partial independence of the syntax, only on the new knowledge. Remarkably, this weaker form can be 
derived from the other postulates (as expressed in Proposition 3), and is hence not used in the subsequent proofs (see e.g. 
Theorem 1 below).

Proposition 3. Postulates (G1)–(G3), (G5) and (G6) imply Postulate (G’4).

Proof. See Appendix. �
Based on this result, the only weakened AGM postulates (G1)–(G3), (G5) and (G6) are considered next.

3 The numbering is kept consistent with the ones in previous works.
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3.2. Faithful assignment and weakened AGM postulates

Intuitively, any revision operator ◦ satisfying the weakened AGM postulates above induces minimal change, that is the 
models of T ◦ T ′ are the models of T that are the closest to models of T ′ , according to some distance for measuring how 
close are models. This is what is now shown in this section by establishing a correspondence between the weakened AGM 
postulates and binary relations over models with minimality conditions.

Let M ⊆ Mod and � be a binary relation over M. We define ≺ as M ≺ M′ if and only if M � M′ and M′�M. We 
also define Min(M, �) = {M ∈M | ∀M′ ∈M, M′⊀M}.

Definition 4 (Faithful assignment). An assignment is a mapping that assigns to each knowledge base T a binary relation �T

over Mod. We say that this assignment is faithful (FA) if the following two conditions are satisfied:

(1) if M, M′ ∈ Mod(T ), M⊀TM′ .
(2) for every M ∈ Mod(T ) and every M′ ∈ Mod \ Mod(T ), M ≺T M′ .

A binary relation �T assigned to a knowledge base T by a faithful assignment will be also said faithful.

This definition of FA differs from the one originally given in [22] on two points:

(1) In [22], a third condition is stated:

∀T , T ′ ⊆ Sen, Mod(T ) = Mod(T ′) ⇒�T =�T ′ .

As for (G4), this condition expresses a syntactical independence.
(2) It is not required for �T to be a pre-order. As shown below, the only important feature to have to make a correspon-

dence between a FA and the fact that ◦ satisfies the weakened AGM Postulates is that there is a minimal model for �T

in Mod(T ′) as expressed by Theorem 1.

Theorem 1. Let ◦ be a revision operator. The operator ◦ satisfies the weakened AGM Postulates (as defined in Section 3.1) if and only if 
there exists a FA that maps each knowledge base T ⊆ Sen to a binary relation �T such that for every knowledge base T ′ ⊆ Sen:

• Mod(T ◦ T ′) \ T riv = Min(Mod(T ′) \ T riv, �T );
• if T ′ is consistent, then Min(Mod(T ′) \ T riv, �T ) �= ∅;
• for every T ′′ ⊆ Sen, if (T ◦ T ′) ∪ T ′′ is consistent, then Min(Mod(T ′) \ T riv, �T ) ∩ Mod(T ′′) = Min(Mod(T ′ ∪ T ′′) \ T riv, �T ).

Proof. See Appendix. �
Note that if T ′ is inconsistent, then so is T ◦ T ′ , and we can set arbitrarily T ◦ T ′ = T ′ , which corresponds to a cautious 

revision. The case where T is inconsistent is not considered in this paper (and is usually excluded from the scope of revision 
procedures), since in that case other operators could be more relevant than revision, in particular debugging methods (see 
e.g. [36] for debugging of terminologies, or [32] for base revision for ontology debugging, both in description logics).

Given a revision operator ◦ satisfying the weakened AGM postulates, any FA satisfying the supplementary conditions of 
Theorem 1 will be called FA+. To a revision operator ◦ satisfying the weakened AGM postulates, we can associate many FA+. 
An example of such a FA+ was given in the proof of Theorem 1. Another example is the mapping f that associates to every 
T ⊆ Sen the binary relation �T defined as follows:

Given T ′ ⊆ Sen, let us start by defining �T ′
T ⊆ Mod(T ′) × Mod(T ′) as:

M �T ′
T M′ ⇐⇒ M ∈ Mod(T ◦ T ′) and M′ /∈Mod(T ◦ T ′).

Let us then set f (T ) = �T = ⋃
T ′ �T ′

T (i.e. M �T M′ ⇔ ∃T ′, M �T ′
T M′).

Theorem 2. If ◦ satisfies the weakened AGM postulates, then the mapping f defined above is a FA+.

Proof. See Appendix. �
Actually, the set of FA+ associated with a revision operator satisfying the weakened AGM postulates has a lattice struc-

ture, as shown by the following definition and propositions.

Definition 5. Let f1, f2 be two FA. Let us denote f1 � f2 (resp. f1 � f2) the mapping that assigns to each knowledge base 
T ⊆ Sen the binary relation �T =�1

T ∪ �2
T (resp. �T =�1

T ∩ �2
T ) where f i(T ) =�i

T for i = 1, 2.
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Proposition 4. If f1 and f2 are FA+ for a same revision operator ◦, then so are f1 � f2 and f1 � f2 .

Proof. See Appendix. �
Proposition 5. The relation ≤ defined on FA+ by:

f ≤ g ⇐⇒ ∀T ⊆ Sen, f (T ) ⊆ g(T )

is a partial ordering.
Given a revision operator ◦ which satisfies the weakened AGM postulates, the poset (FA+(◦), ≤) of FA+ associated with ◦ is a lattice. 

For any f , g ∈ FA+(◦), f � g (respectively f � g) is the least upper bound (respectively the greatest lower bound) of { f , g}. The lattice 
(FA+(◦), ≤) is further complete.

Proof. The fact that the relation ≤ actually defines a partial order is straightforward. The fact that f � g and f � g are the 
least upper bound and greatest lower bound of { f , g} is also easy to show.

Given a subset S ⊆ FA+(◦), its least upper bound is the mapping �S : T �→ ⋃
f ∈S f (T ), and its greatest lower bound is 

the mapping �S : T �→ ⋂
f ∈S f (T ). By extending the proof of Proposition 4, it is easy to show that �S and �S are FA+. �

3.3. Relaxation and AGM postulates

Relaxations have been introduced in [14,15] in the framework of description logics with the aim of defining dissimilarity 
between concepts. Here, we propose to generalize this notion in the framework of satisfaction systems.

Definition 6 (Relaxation). A relaxation is a mapping ρ : Sen → Sen satisfying the following properties:

Extensivity ∀ϕ ∈ Sen, Mod(ϕ) ⊆ Mod(ρ(ϕ)).
Exhaustivity ∃k ∈N, Mod(ρk(ϕ)) = Mod, where ρ0 is the identity mapping, and for all k > 0, ρk(ϕ) = ρ(ρk−1(ϕ)).

Let us observe that relaxations exist if and only if the underlying satisfaction system (Sen, Mod, |=) has tautologies (i.e. 
formulas ϕ ∈ Sen such that Mod(ϕ) = Mod). Indeed, when the satisfaction system has tautologies, we can define the trivial 
relaxation ρ : ϕ �→ ψ where ψ is any tautology.4 Conversely, all relaxations imply that the underlying satisfaction system 
has tautologies to satisfy the exhaustivity condition.

The interest of relaxations is that they give rise to revision operators which have demonstrated their usefulness in 
practice (see Section 4).

Notation 2. Let T ⊆ Sen be a knowledge base. Let K = {kϕ ∈N | ϕ ∈ T }, and K′ = {k′
ϕ ∈ N | ϕ ∈ T }. Let us note:

• ρK(T ) = {ρkϕ (ϕ) | kϕ ∈K, ϕ ∈ T },
• ∑

K = ∑
kϕ∈K kϕ ,

• K ≤K′ when for every ϕ ∈ T , kϕ ≤ k′
ϕ ,

• K <K′ if K ≤K′ and ∃ϕ ∈ T , kϕ < k′
ϕ .

In this notation, kϕ is a number associated with each formula ϕ of the knowledge base (equivalently it can be considered 
as a function of ϕ taking values in N), which intuitively represents the degree to which ϕ is relaxed.

Definition 7 (Revision based on relaxation). Let ρ be a relaxation. A revision operator over ρ is a mapping ◦ : P(Sen) ×
P(Sen) →P(Sen) satisfying for every T , T ′ ⊆ Sen:

T ◦ T ′ =
{

ρK(T ) ∪ T ′ if T ′ is consistent

T ′ otherwise

for some K = {kϕ ∈N | ϕ ∈ T } such that:

(1) if T ′ is consistent, then T ◦ T ′ is consistent;
(2) for every K′ such that ρK′

(T ) ∪ T ′ is consistent, 
∑

K ≤ ∑
K′ (minimality on the number of applications of the relax-

ation);
(3) for every T ′′ such that Mod(T ′) ⊆ Mod(T ′′), if T ◦ T ′′ = ρK′

(T ) ∪ T ′′ , then K′ ≤K.

4 Note that most systems have tautologies. An example without tautology would be a non-complete logic where the only connective is ∨.
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Fig. 1. Successive relaxations of T until it becomes consistent with T ′ .

Revision based on relaxation is illustrated in Fig. 1 where theories are represented as sets of their models. Intermediate 
steps to define the revision operators are then the definitions of formula and theory relaxations.

It is important to note that given a relaxation ρ , several revision operators can be defined. Without Condition 3 of 
Definition 7, we could accept revision operators ◦ that do not satisfy Postulates (G5) and (G6). Hence, Condition 3 allows 
us to exclude such operators. To illustrate this, let us consider in FOL the satisfaction system R = (Sen, Mod, |=) over the 
signature (S, F , P ) where S = {s}, F = ∅ and P = {=: s × s}. Let us consider T , T ′ ⊆ Sen such that:

T =

⎧⎪⎨
⎪⎩

∃x.∃y.(¬x = y) ∧ ∀z(z = x ∨ z = y)

∃x.∃y.∃z.(¬x = y ∧ ¬y = z ∧ ¬x = z)∧
∀w(w = x ∨ w = y ∨ w = z)

⎫⎪⎬
⎪⎭

T ′ =

⎧⎪⎨
⎪⎩

∀x.x = x

∀x.∀y.x = y ⇒ y = x

∀x.∀y.∀z.x = y ∧ y = z ⇒ x = z

⎫⎪⎬
⎪⎭

Obviously, T ′ is consistent. As T does not contain the axioms for equality, it is also consistent. Indeed, the model M with 
its associated set Ms = {0, 1, 2} and the binary relation =M⊆ Ms × Ms , defined by the following set {(0, 0), (1, 1), (2, 0)}, 
satisfies T .

But T ∪ T ′ is not consistent. The reason is that when the meaning of = is the equality, the first axiom of T can only 
be satisfied by models with two values while the second axiom is satisfied by models with three values. A way to retrieve 
the consistency is to remove one of the two axioms. This can be modeled by the relaxation ρ that maps each formula to 
a tautology.5 But in this case, we have then two options depending on whether we remove and change the first or the 
second axiom by a tautology, which give rise to two revision operators ◦1 and ◦2. The first two conditions of Definition 7
are satisfied by both ◦1 and ◦2.

Now, let us take T ′′ = {∃x.∃y.¬x = y} which is satisfied, when added to the axioms in T ′ , by any model with at least 
two elements. Hence, (T ◦1 T ′) ∪ T ′′ and (T ◦2 T ′) ∪ T ′′ are consistent. Without the third condition, nothing would prevent 
to define T ◦1 (T ′ ∪ T ′′) (respectively T ◦2 (T ′ ∪ T ′′)) by removing and change in T the second (respectively the first) axiom 
by a tautology which would be a counter-example to Postulates (G5) and (G6). Actually, as shown by the result below, this 
third condition of Definition 7 entails Postulates (G5) and (G6), and then, by Proposition 3, entails Postulate (G’4).

However in some situations Condition 3 may be considered as too strong, forcing to relax more than what would be 
needed to satisfy only Condition 2. This could typically be the case when Condition 2 could be obtained in two different 
ways, for instance for K′ = {0, 1, 0, 0...} or for K′′ = {1, 0, 0, 0...}. Then taking Cn(T ′) = Cn(T ′′), and revising T ◦ T ′ using K′
and T ◦ T ′′ using K′′ would not meet Condition 3. To satisfy it, relaxation should be done for instance with K = {1, 1, 0, 0...}. 
Therefore in concrete applications, we will have to find a compromise between Condition 3 and (G5)–(G6) at the price of 
potential larger relaxations on the one hand, and less relaxation but potentially the loss of (G5)–(G6) on the other hand.

Notation 3. In the context of Definition 7, let T , T ′ ⊆ Sen be two knowledge bases. If T ◦ T ′ = ρK(T ) ∪ T ′ with K = {kϕ ∈
N | ϕ ∈ T }, then we note KT ′

T =K.

Theorem 3. Any revision operator ◦ based on a relaxation (Definition 7) satisfies the weakened AGM postulates.

Proof. See Appendix. �
So far we showed that several FA+ can be associated with a given revision operator ◦ satisfying the weakened AGM 

postulates. Here, we define a particular one, which is more specific to revision operators based on relaxation. Let ρ be a 
relaxation and fρ be the mapping that associates to every T ⊆ Sen the binary relation �T defined as follows:

5 We will see in Section 4.3 a less trivial but more interesting relaxation in FOL that consists in changing universal quantifiers into existential ones.
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Given T ′ ⊆ Sen, let us start by defining �T ′
T ⊆ Mod(T ′) × Mod(T ′) as:

M �T ′
T M′ ⇐⇒ ∀K′′≥ KT ′

T ,M′ ∈ Mod(ρK′′
(T )) ⇒ ∃K′≥ KT ′

T ,

{
K′ < K′′ and

M ∈ Mod(ρK′
(T ))

Let us then set �T = ⋃
T ′ �T ′

T (i.e. M �T M′ ⇔ ∃T ′, M �T ′
T M′). We have �T ⊆ Mod × Mod because �∅

T ⊆�T .
Intuitively, it means that T has to be relaxed more to be satisfied by M′ than to be satisfied by M.

Theorem 4. For any revision operator ◦ based on a relaxation ρ as defined in Definition 7, the mapping fρ is a FA+.

Proof. See Appendix. �
4. Applications

In this section, we illustrate our general approach by defining revision operators based on relaxations for the logics
PL, HCL, and FOL. We further develop the case of DLs in Section 4.4, by defining several concrete relaxation operators for 
different fragments of the DL ALC .

4.1. Revision in PL

Here, inspired by the work in [7,8] on Morpho-Logics, we define relaxations based on dilations from mathematical mor-
phology [6]. In PL, knowing a formula is equivalent to knowing the set of its models, and we can identify any propositional 
formula ϕ with the set of its interpretations Mod(ϕ). To define relaxations in PL, we will apply set-theoretic morphological 
operations. First, let us recall a basic definition of dilation in mathematical morphology [6]. Let X and B be two subsets 
of Rn . The dilation of X by the structuring element B , denoted by D B (X), is defined as follows:

D B(X) = {x ∈Rn | Bx ∩ X �= ∅}
where Bx denotes the translation of B at x. More generally, dilations in any space can be defined in a similar way by 
considering the structuring element as a binary relationship between elements of this space.6

In PL, this leads to the following dilation of a formula ϕ ∈ Sen:

Mod(D B(ϕ)) = {ν ∈ Mod | Bν ∩ Mod(ϕ) �= ∅}
where Bν contains all the models that satisfy some relationship with ν . The relationship standardly used is based on a 
discrete distance δ between models, and the most commonly used is the Hamming distance dH where dH (ν, ν ′) for two 
propositional models over a same signature is the number of propositional symbols that are instantiated differently in 
ν and ν ′ . From any distance δ between models, a distance from models to a formula is derived as follows: d(ν, ϕ) =
minν ′|=ϕδ(ν, ν ′). In this case, we can rewrite the dilation of a formula as follows:

Mod(D B(ϕ)) = {ν ∈ Mod(�) | d(ν,ϕ) ≤ 1}
This consists in using the distance ball of radius 1 as structuring element B . To ensure the exhaustivity condition to our 
relaxation, we need to add a condition on distances, the betweenness property [14].

Definition 8 (Betweenness property). Let δ be a discrete distance over a set S . δ has the betweenness property if for all x, y
in S and all k in {0, 1, . . . , δ(x, y)}, there exists z in S such that δ(x, z) = k and δ(z, y) = δ(x, y) − k.

The Hamming distance trivially satisfies the betweenness property. The interest for our purpose of this property is that 
it allows from any model to reach any other one, and then ensuring the exhaustivity property of relaxation.7

Proposition 6. Let D B be a dilation applied to formulas ϕ ∈ Sen for a finite signature, and based on a distance between models that 
satisfies the betweenness property. Such a dilation D B is a relaxation.

6 Definitions based on the notion of structuring elements are all particular cases of more general algebraic dilations, defined as operators between lattices, 
which commute with the supremum.

7 Hence, a dilation of formulas could also be defined by using a distance ball of radius n as structuring element [7].
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Fig. 2. A simple example of revision based on dilation in PL (see text). (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.)

Proof. It is extensive. Indeed, for every ϕ and for every model ν ∈ Mod(ϕ), we have that d(ν, ϕ) = 0, and then ϕ |= D B(ϕ). 
Exhaustivity results from the fact that the considered signature is a finite set and from the betweenness property. �

Using Definition 7, this relaxation allows defining revision operators that include the classical Dalal’s revision as a par-
ticular case (see [7,8]).

A simple example is illustrated in Fig. 2. Three propositional symbols a, b and c are considered. The set of models is 
represented by the vertices of a cube, and we assimilate a formula formed by a simple conjunction of symbols with its 
corresponding model. For instance a ∧ b ∧ c is assimilated to the corresponding world, represented by the point (1, 1, 1)

in the cube. The edges link two worlds differing by one instantiation of a propositional symbol, i.e. at a distance 1 for the 
Hamming distance. For instance vertices representing a ∧ b ∧ c and ¬a ∧ b ∧ c are linked by an edge (we have dH (a ∧ b ∧
c, ¬a ∧ b ∧ c) = 1). Colored dots define ϕ and ψ : ϕ = a ∧ b ∧ c and ψ = ¬c. The red circle represents the result of the 
revision ϕ ◦ ψ= a ∧ b ∧ ¬c. Indeed, ϕ and ψ are inconsistent, hence we relax ϕ by a dilation of size 1 according to the 
Hamming distance, leading to D B (ϕ) = (a ∧ b ∧ c) ∨ (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (a ∧ b ∧ ¬c), which is now consistent with 
ϕ and the conjunction provides the revision. The result here simply amounts to change the old belief which included c, by 
negating this atom according to the new knowledge expressed by ψ .

4.2. Revision in HCL

Many works have focused on belief revision involving propositional Horn formulas (cf. [12] to have an overview on these 
works). Here, we propose to extend relaxations that we have defined in the framework of PL to deal with the Horn fragment 
of propositional theories.

Definition 9 (Model intersection). Given a propositional signature � and two �-models ν, ν ′ : � → {0, 1}, we note ν ∩ ν ′ :
� → {0, 1} the �-model defined by:

p �→
{

1 if ν(p) = ν ′(p) = 1
0 otherwise

Given a set of �-models S , we note

cl∩(S) = S ∪ {ν ∩ ν ′ | ν,ν ′ ∈ S}

cl∩(S) is then the closure of S under intersection of positive atoms.
For any set S closed under intersection of positive atoms, there exists a Horn sentence ϕ that defines S (i.e. Mod(ϕ) =

S). Given a distance δ between models, we then define a relaxation ρ as follows: for every Horn formula ϕ , ρ(ϕ) is any 
Horn formula ϕ′ such that Mod(ϕ′) = cl∩(Mod(D B(ϕ)) (by the previous property, we know that such a formula ϕ′ exists).

Proposition 7. With the same conditions as in Proposition 6, the mapping ρ is a relaxation.

Then a revision operator can be defined from ρ according to Definition 7.

4.3. Revision in FOL

A trivial way to define a relaxation in FOL is to map any formula to a tautology. A less trivial and more interesting 
relaxation is to change universal quantifiers to existential ones. Indeed, given a formula ϕ of the form ∀x.ψ , if ϕ is not 
consistent with a given theory T , ∃x.ψ may be consistent with T (it is quite intuitive that if it cannot be consistent for all 
values, it can be for some of them). A similar approach has been adopted for defining merging operators using dilations 
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Fig. 3. From concept relaxation and retraction to revision operators in DL.

in FOL in [20]. In the following we suppose that given a signature, every formula ϕ in Sen is a disjunction of formulas 
in prenex form (i.e. ϕ is of the form 

∨
j Q j

1 x j
1 . . . Q j

n j
x j

n j
.ψ j where each Q j

i is in {∀, ∃}). Let us define the relaxation ρ as 
follows, for a tautology τ :

• ρ(τ ) = τ ;
• ρ(∃1x1 . . .∃nxn.ϕ) = τ ;
• Let ϕ = Q 1x1 . . . Q nxn.ψ be a formula such that the set Eϕ = {i, 1 ≤ i ≤ n | Q i = ∀} �= ∅. Then, ρ(Q 1x1 . . . Q nxn.ϕ) =∨

i∈Eϕ
ϕi where ϕi = Q ′

1x1 . . . Q ′
nxn.ψ such that for every j �= i, 1 ≤ j ≤ n, Q ′

j = Q j and Q ′
i = ∃;

• ρ(
∨

j Q j
1 x j

1 . . . Q j
n j

x j
n j

.ψ) = ∨
j ρ(Q j

1 x j
1 . . . Q j

n j
x j

n j
.ψ).

Proposition 8. ρ is a relaxation.

Proof. It is obviously extensive, and exhaustivity results from the fact that in a finite number of steps, we always reach the 
tautology τ . �

Again a revision operator can then be defined from ρ using Definition 7.

4.4. Revision in DL

4.4.1. General construction scheme
The instantiation of our abstract framework to DLs follows the scheme depicted in Fig. 3.
The necessary ingredient is the specialization of formulas relaxations as abstractly defined in Definition 6. To this end, 

we propose to define a formula relaxation in two ways (other definitions may also exist). For sentences of the form C � D , 
the first proposed approach consists in relaxing the set of interpretations of D , while the second one amounts to “retracting” 
the set of interpretations of C . We give hereafter formal definitions of these notions of concept relaxation and retraction.

Definition 10 (Concept relaxation). Given a signature (NC , NR , I), we note C the set of concepts over this signature. A concept 
relaxation is an operator ρ : C → C that satisfies, in every model, the following properties for all C in C:

(1) ρ is extensive, i.e. C � ρ(C)

(2) ρ is exhaustive, i.e. ∃k ∈N, 
 � ρk(C)

A similar notion of concept relaxation has first been introduced in [14,15] but with an additional constraint of non-
decreasingness property that we do not need in this work.

A trivial concept relaxation is the operation ρ
 that maps every concept C to 
. Other non-trivial concrete concept 
relaxations will be discussed in the sequel.

Definition 11 (Concept retraction). A (concept) retraction is an operator κ : C → C that satisfies, in every model, the following 
properties for all C in C:

(1) κ is anti-extensive, i.e. κ(C) � C , and
(2) κ is exhaustive, i.e. ∀D ∈ C, ∃k ∈ N such that κk(C) � D .

Note that in this definition, D could be replaced equivalently by ⊥.
With these definitions at hand, formulas relaxation can be defined as follows, using either concept relaxation (Defini-

tion 10) or concept retraction (Definition 11). We suppose that any signature (NC , NR , I) always contains in NR a relation 
name r
 the meaning of which is, in any model O, rO
 = �O × �O .

Definition 12 (Formula relaxation based on concept relaxation). Let ρ a concept relaxation as in Definition 10. A formula 
relaxation based on ρ , denoted ρF

ρ is defined as follows, for any two complex concepts C and D , any individuals a, b, and 
any role r:
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ρ
ρ
F (C � D) ≡ C � ρ(D),

ρ
ρ
F (a : C) ≡ a : ρ(C),

ρ
ρ
F (〈a,b〉 : r)) ≡ 〈a,b〉 : r
.

Note that the relaxation of the role assertion axiom amounts to delete it from the knowledge base, since a tautology is 
satisfied by any model.

Proposition 9. ρρ
F is a formula relaxation in the sense of Definition 6.

Proof. It directly follows from the extensivity and exhaustivity of ρ . �
Definition 13 (Formula relaxation based on concept retraction). A formula relaxation based on a concept retraction κ , denoted 
ρκ

F , is defined as follows, for any two complex concepts C and D , any individuals a, b, and any role r:

ρκ
F (C � D) ≡ κ(C) � D,

ρκ
F (a : C) ≡ a : 
,

ρκ
F (〈a,b〉 : r)) ≡ 〈a,b〉 : r
.

Similarly, the relaxation of the concept assertion amounts to delete it from the knowledge base.
A similar construction can be found in [29] for sentences of the form (a : C).

Proposition 10. ρκ
F is a formula relaxation in the sense of Definition 6.

Proof. Extensivity and exhaustivity follow directly from the properties of κ . �
To complete the picture, it remains to define concrete concept relaxation and retraction operators for particular Descrip-

tion Logics families. We consider the logic ALC , as defined in Section 2.1, and its fragments EL and ELU . EL-concept 
description constructors are existential restriction (∃), conjunction (�), 
 and ⊥, while ELU -concept constructors are those 
of EL enriched with disjunction (�).

4.4.2. Relaxation and retraction in EL
EL-concept retractions. A trivial concept retraction is the operator κ⊥ that maps every concept to ⊥. Note that this operator 
is also particularly interesting for debugging ontologies expressed in EL [37]. Let us illustrate this operator for revision 
through the following example adapted from [29] to restrict the language to EL.

Example 2. Let T = {Tweety � bird, bird � flies} and T ′ = {Tweety � flies � ⊥}. Clearly T ∪ T ′ is inconsistent. The formula 
relaxation based on the retraction κ⊥ amounts to apply κ⊥ to the concept Tweety resulting in the following new knowledge 
base {⊥ � bird, bird � flies} which is now consistent with T ′ . An alternative solution is to retract the concept bird in 
bird � flies which results in the following knowledge base {Tweety � bird, ⊥ � flies} which is also consistent with T ′ . 
The sets of minimal sum K1 and K2 in Condition 2 of Definition 7 are K1 = {1, 0}, (i.e. kϕ1 = 1, kϕ2 = 0, where ϕ1 =
Tweety � bird, ϕ2 = bird � flies) and K2 = {0, 1}. However, Condition 3 of the same definition is not satisfied: let us take 
T ′′ = T ′ . Then a fortiori we have Mod(T ′) ⊆ Mod(T ′′). We can then write T ◦ T ′ = ρK1 (T ) ∪ T ′ and T ◦ T ′′ = ρK2 (T ) ∪ T ′′ =
ρK2 (T ) ∪ T ′ . But we do not have any ordering relation between K1 and K2. To ensure Condition 3, we must relax one more 
time the axioms in T leading to the following knowledge base {⊥ � bird, ⊥ � flies} (for K = {1, 1}). The final revision 
then writes T ◦ T ′ = {⊥ � bird, ⊥ � flies, Tweety � flies � ⊥}. This revision satisfies the weakened AGM postulates but may 
appear too strong, and one may prefer one of the following solutions: T ◦1 T ′ = {⊥ � bird, bird � flies, Tweety � flies � ⊥}
or T ◦2 T ′ = {Tweety � bird, ⊥ � flies, Tweety � flies � ⊥} at the price of loosing (G5)–(G6).

Although the results are rather intuitive, one should note that it is pretty hard to figure out what each DL researcher 
would like to have as a result in such an example, and this enforces the interest of relying on an established theory such 
as AGM or its extension. In our work we propose operators enjoying a set of properties stemming from our adaptation of 
the AGM theory. Some of them can meet the requirement of a knowledge engineer, and some other may not completely, 
depending on the context, the ontology, etc.

EL-concept relaxations. Dually, a trivial relaxation is the operator ρ
 that maps every concept to 
. Other non-trivial 
EL-concept description relaxations have been introduced in [14]. We summarize here some of these operators.
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EL concept descriptions can appropriately be represented as labeled trees, often called EL description trees [3]. An EL
description tree is a tree whose nodes are labeled with sets of concept names and whose edges are labeled with role names. 
An EL concept description

C ≡ P1 � · · · � Pn � ∃r1.C1 � · · · � ∃rm.Cm, (2)

with Pi ∈ NC ∪ {
}, can be translated into a description tree by labeling the root node v0 with {P1, . . . , Pn}, creating an r j
successor, and then proceeding inductively by expanding C j for the r j-successor node for all j ∈ {1, . . . , m}.

An EL-concept description relaxation then amounts to apply simple tree operations. Two relaxations can hence be 
defined [14]: (i) ρdepth that reduces the role depth of each concept by 1, simply by pruning the description tree, and (ii) 
ρleaves that removes all leaves from a description tree.

4.4.3. Relaxations in ELU
The relaxation defined above exploits the strong property that an EL concept description is isomorphic to a description 

tree. This is arguably not true for more expressive DLs. Let us try to go one step further in expressivity and consider the logic 
ELU . Here we only propose some definitions of relaxations. Retractions could be designed similarly. A relaxation operator, 
as introduced in [14], requires a concept description to be in a special normal form, called normal form with grouping of 
existentials, defined recursively as follows.

Definition 14 (Normal form with grouping of existential restrictions). We say that an EL-concept D is written in normal form 
with grouping of existential restrictions if it is of the form

D = �
A∈ND

A � �
r∈NR

Dr, (3)

where ND ⊆ NC is a set of concept names and the concepts Dr are of the form

Dr = �
E∈CDr

∃r.E, (4)

where no subsumption relation holds between two distinct conjuncts and CDr is a set of complex EL-concepts that are 
themselves in normal form with grouping of existential restrictions.

The purpose of Dr terms is simply to group existential restrictions that share the same role name. For an ELU -concept 
C we say that C is in normal form if it is of the form (C ≡ C1 � C2 � · · · � Ck) and each of the Ci is an EL-concept in normal 
form with grouping of existential restrictions.

Definition 15 (Relaxation from normal form [14]). Given an ELU -concept description C we define an operator ρe recursively 
as follows.

• For C = 
 we define ρe(C) = 
.
• For C = Dr , where Dr is a group of existential restrictions as in Equation (4), we need to distinguish two cases:

· if Dr ≡ ∃r.
 we define ρe(Dr) = 
, and

· if Dr �≡ ∃r.
 then we define ρe(Dr) =�S⊆CDr

(
�E /∈S ∃r.E � ∃r.ρe

(
�F∈S F

))
.

Note that in the latter case 
 /∈ CDr since Dr is in normal form.

• For C = D as in Equation (3) we define ρe(D) =�G∈CD

(
ρe(G) ��H∈CD\{G} H

)
, where CD = ND ∪ {Dr | r ∈ NR}.

• Finally for C = C1 � C2 � · · · � Ck we set ρe(C) = ρe(C1) � ρe(C2) � · · · � ρe(Ck).

Proposition 11. [14] ρe is a relaxation.

Let us illustrate this operator with an example.

Example 3. Suppose an agent believes that a person Bob is married to a female judge: T = {Bob � male � ∃.MarriedTo.

(female � judge)}. Suppose now that due to some obscurantist law, it happens that females are not allowed to be judges. 
This new belief is captured as T ′ = {judge�female � ⊥}. By applying ρe one can resolve the conflict between the two belief 
sets. To ease the reading, let us rewrite the concepts as follows: A ≡ male, B ≡ female, C ≡ judge, m ≡ MarriedTo, D ≡
∃MarriedTo. (female � judge). Hence, from Definition 15 we have ρe(A � D) ≡ (ρe(A) � D) � (A � ρe(D)), with ρe(A) ≡ 

and
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ρe(D) ≡∃m.ρe(B � C) � (∃m.B � ∃m.ρe(C)) � (∃m.ρe(B) � ∃m.C)

≡∃m.(B � C) � (∃m.B � ∃m.
) � (∃m.
 � ∃m.C)

≡∃m.B � ∃m.C � ∃m.(B � C) ≡ ∃m.B � ∃m.C

Then

ρe(A � D) ≡ (ρe(A) � D) � (A � ρe(D))

≡ (
 � D) � (A � (∃m.B � ∃m.C))

≡ D � (A � (∃m.B � ∃m.C))

The new agent’s belief, up to a rewriting, becomes
{Bob � ∃.MarriedTo. (female � judge) � (male � (∃Married.female � ∃Married.judge)) , judge � female � ⊥}.

One can notice from this example that the relaxation ρe leads to a refined revision operator. Indeed, the resulting relaxed 
axiom in T emphasizes all the minimal possible changes (through the disjunction operator) on Bob’s condition. This is due 
to the fact that the relaxation operator ρe corresponds to dilating the set of models of a ball defined from an edit distance 
on the concept description tree of size one. For more details on the correspondence between this relaxation operator, the 
set of models and tree edit distances, one can refer to [14].

Another possibility for defining a relaxation in ELU is obtained by exploiting the disjunction constructor by augmenting 
a concept description with a set of exceptions.

Definition 16 (Relaxation from exceptions in ELU ). Given a set of exceptions E = {E1, · · · , En}, we define a relaxation of 
degree k of an ELU -concept description C as follows: for a finite set Ek ⊆ E with |Ek| = k, C is relaxed by adding the sets 
Ei j ∈ Ek such that Ei j � C � ⊥

ρk
E (C) = C � Ei1 � · · · � Eik .

Proposition 12. ρk
E is extensive.

Proof. Extensivity of this operator follows directly from the definition. �
However, exhaustivity is not necessarily satisfied unless the exception set includes the 
 concept, or the disjunction of 

some or all of its elements entails the 
 concept.
If we consider again Example 2, a relaxation of the formula bird � flies using the operator ρk

E over the concept flies with the ex-
ception set E = {Tweety} results in the formula bird � flies � Tweety. The new revised knowledge base, if Condition 3 in Definition 7
is not considered, is then {Tweety � bird, bird � flies � Tweety, Tweety � flies � ⊥} which is consistent. This is obviously a more 
refined revision than the one obtained from the operator ρ⊥, but requires the logic to be equipped with the disjunction connective and 
the definition of a set of exceptions.

Another example involving this relaxation will be discussed in the ALC case (cf. Example 4).

4.4.4. Relaxation and retraction in ALC
We consider here operators suited to ALC language. Of course, all the operators defined for EL and ELU remain valid.

ALC-concept retractions. A first possibility for defining retraction is to remove iteratively from an ALC-concept description 
one or a set of its subconcepts. A similar construction has been introduced in [29]. Interestingly enough, almost all the 
operators defined in [20,29] are relaxations.

Definition 17 (Retraction from exceptions in ALC). Given a set of exceptions E = {E1, · · · , En}, we retract any ALC-concept 
description C by constraining it to the elements Ec

i such that Ei � C :

κn
E (C) = C � Ec

1 � · · · � Ec
n.

Proposition 13. κn
E is anti-extensive.

Proof. The proof follows directly from the definition. �
As for its counterpart relaxation (ρk

E ), exhaustivity of κn
E is not necessarily satisfied unless the exception set includes the 

⊥ concept, or the conjunction of some or all of its elements entails the ⊥ concept.
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Consider again Example 2. We have κ1
E (bird) = bird�Tweety

c . The resulting revised knowledge base, if Condition 3 in Definition 7
is not considered, is then {Tweety � bird, bird � Tweety

c � flies, Tweety � flies � ⊥} which is consistent.
Another possibility, suggested in [20] and related to operators defined in propositional logic as introduced in [7], consists 

in applying the retraction at the atomic level. This captures somehow Dalal’s idea of revision operators in propositional 
logic [10].

Definition 18. Let C be an ALC-concept description of the form Q 1r1 · · · Q mrm.D , where Q i is a quantifier and D is 
quantifier-free and in CNF form,8 i.e. D = E1 � E2 � · · · En with Ei being disjunctions of possibly negated atomic concepts, i.e. 
Ei = �k∈�(i) Ak , where �(i) is the index set of the atomic (possibly negated) concepts Ak forming Ei . We define, as in the 
propositional case [7], κ(Ei) = �k∈�(i) � j∈�(i)\{k} A j and κn

p(D) = �i∈{1...n}κ(Ei). Then we set κDalal(C) = Q 1r1 · · · Q mrm.κp(D).

Proposition 14. κn
Dalal is a retraction.

Proof. Exhaustivity and anti-extensivity follow from those of κp . Indeed the operator κp is exhaustive and anti-extensive, 
and if applied n times it reaches the ⊥ concept (see [7] for properties of this operator). �

This idea can be generalized to consider any retraction defined in ELU .

Definition 19. Let C be an ALC-concept description of the form Q 1r1 · · · Q mrm.D , where Q i is a quantifier and D is 
quantifier-free.

Then we define κ∩(C) = Q 1r1 · · · Q mrm.κn
E (D).

Proposition 15. κn∩ is anti-extensive.

Proof. The properties of this operator follows from the ones of κn
E (D). Hence, anti-extensivity is verified but not necessarily 

exhaustivity. �
Another possible ALC-concept description retraction is obtained by substituting the existential restriction by an univer-

sal one. This idea has been sketched in [20] for defining dilation operators by transforming ∀ into ∃, i.e. special relaxation 
operators enjoying additional properties [14], and also used for defining revision in FOL (see Section 4.3). We adapt it here, 
by transforming ∃ into ∀, to define retraction in DL syntax.

Definition 20. Let C be an ALC-concept description of the form Q 1r1 · · · Q nrn.D , where Q i is a quantifier, D is quantifier-
free, then we define

κq(C) =�{Q ′
1r1 · · · Q ′

nrn.D | ∃ j ≤ n s.t. Q j = ∃ and Q ′
j = ∀, and for all i ≤ n s.t. i �= j, Q ′

i = Q i}

Proposition 16. κq is anti-extensive.

Proof. See Appendix. �
Note that for κq exhaustivity can be obtained by further removing recursively the remaining universal quantifiers and 

apply at the final step any retraction defined above on the concept D .

ALC-concept relaxations. Let us now introduce some relaxation operators suited to ALC language.

Definition 21. Let C be an ALC-concept description of the form Q 1r1 · · · Q mrm.D , where Q i is a quantifier and D is 
quantifier-free and in DNF form, i.e. D = E1 � E2 � · · · En with Ei being a conjunction of possibly negated atomic concepts, 
i.e. Ei = �k∈�(i) Ak , where �(i) is the index set of the atomic (possibly negated) concepts Ak forming Ei . We define ρ(Ei) =
�k∈�(i) � j∈�(i)\{k} A j and ρn

p(D) = �i∈{1...n}ρ(Ei), as in the propositional case [7], and then ρn
Dalal(C) = Q 1r1 · · · Q mrm.ρn

p(D).

As for retraction, this idea can be generalized to consider any relaxation defined in ELU .

Definition 22. Let C be an ALC-concept description of the form Q 1r1 · · · Q nrn.D , where Q i is a quantifier and D is 
quantifier-free, then we define ρn∪(C) = Q 1r1 · · · Q nrn.ρn

E (D).

8 Any concept can indeed be written in this prenex form.
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Let us consider another example adapted from the literature to illustrate these operators [29].

Example 4. Let us consider the following knowledge bases: T = {Bob � ∀hasChild.rich, Bob � ∃hasChild.Mary, Mary �
rich} and T ′ = {Bob � hasChild.John, John � rich

c} (we consider here individuals as concepts). Relaxing the formula 
Bob � ∀hasChild.rich by applying ρn∪ to the concept on the right hand side results in the following formula Bob �
∀hasChild.(rich � John) which resolves the conflict between the two knowledge bases.

A last possibility, dual to the retraction operator given in Definition 20, consists in transforming universal quantifiers into 
existential ones (as done for relaxation in FOL in Section 4.3).

Definition 23. Let C be an ALC-concept description of the form Q 1r1 · · · Q nrn.D , where Q i is a quantifier and D is 
quantifier-free, then we define a relaxation as:

ρq(C) =�{Q ′
1r1 · · · Q ′

nrn.D | ∃ j ≤ n s.t. Q j = ∀ and Q ′
j = ∃, and for all i ≤ n s.t. i �= j, Q ′

i = Q i}

If we consider again Example 4, relaxing the formula Bob � ∀hasChild.rich by applying ρq to the concept on the right 
hand side results in the following formula Bob � ∃hasChild.rich, which resolves the conflict between the two knowledge 
bases.

Proposition 17. The operators ρDalal and ρq are extensive and exhaustive. The operator ρ∪ is extensive but not exhaustive.

Proof. The properties of ρDalal and ρ∪ are directly derived from the definitions and from properties of ρp detailed in [7]
and ρE . The proof of ρq being extensive and exhaustive can be found in [20]. �
5. Related work

Recently a first generalization of AGM revision has been proposed in the framework of Tarskian logics considering mini-
mality criteria on removed formulas [34] following previous works of the same authors for contraction [35]. Representation 
results that make a correspondence between a large family of logics containing non-classical logics such as DL and HCL
and AGM postulates for revision with such minimality criteria have then been obtained. Here, the proposed generalization 
also gives similar representation theorems (cf. Theorem 1) but for a different minimality criterion. Indeed, we showed in 
Section 3.2 that revision operators satisfying the weakened AGM postulates are precisely the ones that accomplish an up-
date with minimal change to the set of models of knowledge bases, generalizing the approach developed in [22] for the 
logic PL and [30] for DL. However, our revision operator based on relaxation also has a minimality criterion on transformed 
formulas. Indeed, a simple consequence of Definition 7 is the property

(Relevance) Let T , T ′ ⊆ Sen be two knowledge bases such that T ◦ T ′ = ρK(T ) ∪ T ′ . Then, for every ϕ ∈ T such that kϕ �= 0, 
ρK′

(T ) ∪ T ′ is inconsistent for K′ =K \ {kϕ} ∪ {k′
ϕ = 0}.

This property states that only formulas that contribute to inconsistencies with T ′ are allowed to be transformed. Our 
property (Relevance) is similar to the property with the same name in [34,35], but for contraction operators, and that 
states that only the formulas that somehow “contribute” to derive the formulas to abandon can be removed.

Since the primary aim of this paper is to show that a more general framework, encompassing different logics, can be 
useful, it is out of the scope of this paper to provide an overview of all existing relaxation methods. However, some works 
deserve to be mentioned, since they are based on ideas that show some similarity with the relaxation notion proposed in 
our framework.

The relaxation idea originates from the work on Morpho-Logics, initially introduced in [7,8]. In this seminal work, revi-
sion operators (and explanatory relations) were defined through dilation and erosion operators. These operators share some 
similarities with relaxation and retraction as defined in this paper. Dilation is a sup-preserving operator and erosion is inf-
preserving, hence both are increasing. Some particular dilations and erosions are exhaustive and extensive while relaxation 
and retraction operators are defined to be exhaustive and extensive but not necessarily sup- and inf-preserving. Dilation has 
been further exploited for merging first-order theories in [20].

In [1], the notion of partial meet contraction is defined as the intersection of a non-empty family of maximal subsets 
of the theory that do not imply the proposition to be eliminated. Revision is then defined from the Levi identity. The 
maximal subsets can also be selected according to some choice function. The authors also define a notion of partial meet 
revision, which can be seen as a special case of the relaxation operator introduced in this paper. In [21], the author also 
discusses choice functions and compares the postulates for partial meet revision to the AGM postulates. He also highlights 
the distinction between belief sets (which can be very large) and belief bases (which are not necessarily closed by Cn). 
More precisely, A is a belief base of a belief set K iff K = Cn(A). A permissive belief revision is defined in [9], based on the 
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notion of weakening. The beliefs which are suppressed by classical revision methods are replaced by weaker forms, which 
keep the resulting belief set consistent. This notion of weakening is closed to the one of relaxation developed in this paper. 
In the last decade, several works have studied revision operators in description logics. While most of them concentrated on 
the adaptation of the AGM theory, few works have addressed the definition of concrete operators [25,27–29]. For instance, 
in [25], based on the seminal work in [5], revision in DL is studied by defining strategies to manage inconsistencies and using 
the notion of knowledge integration (see also the work by Hansson). The authors propose a conjunctive maxi-adjustment, for 
stratified knowledge bases and lexicographic entailment. In [28], weakening operators, that are in fact relaxation operators, 
are defined. Our work brings a principled formal flavor to these operators. In [27], revision of ontologies in DL is based 
on the notion of forgetting, which is also a way to manage inconsistencies. The authors propose a model based approach, 
inspired by Dalal’s revision in PL, and based on a distance between terminologies and on the difference set between two 
interpretations. The models of the revision T ◦ T ′ are then the interpretations I for which there exists an interpretation 
I ′ such that the cardinality of the difference set between I and I ′ is equal to the distance between T and T ′ . In [24], 
updating Aboxes in DL is discussed, and some operators are introduced. The rationality of these operators is not discussed, 
hence the interest of a formal theory such as the AGM postulates. In [2] an original use of DL revision is introduced for 
the orchestration of processes. A closely related field is inconsistency handling in ontologies (e.g. [36,37]), with the main 
difference that the rationality of inconsistency repairing operators is not investigated, as suggested by the AGM theory.

As previously highlighted, some of our DL-based relaxation operators are closely related to the ones introduced in [29]
for knowledge bases revision. Our relaxation-based revision framework, being abstract enough (i.e. defined through easily 
satisfied properties), encompasses these operators. Moreover, the revision operator defined in [29] considers only inconsis-
tencies due to Abox assertions. Our operators are general in the sense that Abox assertions are handled as any formula of 
the language.

6. Conclusion

The contribution of this paper is threefold. First, we provided a generalization of AGM postulates, in a slightly weaker 
form from a model-theoretic point of view, in the abstract model theory of satisfaction systems, so as they become ap-
plicable to a wide class of non-classical logics. In this framework, we then generalized to any satisfaction systems the 
characterization of the AGM postulates given by Katsuno and Mendelzon for propositional logic in terms of minimal change 
with respect to an ordering among interpretations. This work generalizes the previous ones in the area. It also suggests the 
theory behind satisfaction systems to be a principled framework for dealing with knowledge dynamics with the growing 
interest on non-classical logics such as DL. We do hope that bridges can thus be built, by working at the cross-road of 
different areas of theoretical computer science.

Secondly, we proposed a general framework for defining revision operators based on the notion of relaxation. We demon-
strated that such a relaxation-based framework for belief revision satisfies the weakened AGM postulates. As a byproduct, 
we give a principled formal flavor to several operators defined in the literature (e.g. weakening operators defined in DL).

Thirdly, we introduced a number of concrete relaxations within the scope of description logics, discussed their properties 
and illustrated them through simple examples. It was out of the scope of this paper to discuss languages such as OWL. 
However, the proposed approach could be applied to SROIQ and implemented in OWL, by augmenting a relaxation with 
operations on complex constructors.

Future works will concern the study of the complexity of the introduced operators, the comparison of their induced 
ordering, and their generalization to more expressive DL as well as other non-classical logics such as first-order Horn logics 
or equational logics.

Finally, there is an extension of satisfaction systems that takes into account explicitly the notion of signatures, the theory 
of institutions [19], a categorical model theory which has emerged in computing science studies of software specifications 
and semantics. In this paper, as we have considered logical theories over a same signature, signature morphisms and their 
interpretation for model classes and sentence sets were not relevant. However, these results carry over to institutions, which 
are indexed satisfaction systems.

Appendix. Proofs of the main results

Proof of Proposition 3. Let us suppose that Cn(T ′
1) = Cn(T ′

2). Here, three cases have to be considered:

(1) One of T ′
1 and T ′

2 is inconsistent (say T ′
1 without loss of generality). Since Cn(T ′

1) = Cn(T ′
2) by hypothesis, T ′

2 is also 
inconsistent. By Postulate (G2), we then have that, for i = 1, 2, Mod(T ◦T ′

i ) ⊆ Mod(T ′
i ), and Mod(T ′

i ) = T riv (Corollary 1). 
Hence Mod(T ◦ T ′

i ) ⊆ T riv , and Mod(T ◦ T ′
1) = Mod(T ◦ T ′

2) = T riv .
(2) Both T ∪ T ′

1 and T ∪ T ′
1 are consistent. Since Cn(T ′

1) = Cn(T ′
2), we know that Mod(T ′

1) = Mod(T ′
2) (Equation (1)), and 

then Mod(T ∪ T ′
1) = Mod(T ∪ T ′

2). Therefore, by Postulate (G3), we have that Mod(T ◦ T ′
1) = Mod(T ◦ T ′

2).
(3) T ′

1 and T ′
2 are consistent but T ∪ T ′

1 or T ∪ T ′
2 is not (say T ∪ T ′

1). From Cn(T ′
1) = Cn(T ′

2), we derive that T ∪ T ′
2 is 

also inconsistent. By Postulate (G1), both T ◦ T ′
1 and T ◦ T ′

2 are consistent. Let M ∈ Mod(T ◦ T ′
1). If M ∈ T riv , then 

obviously M ∈ Mod(T ◦ T ′
2). Therefore, let us suppose that M /∈ T riv . By Postulate (G2), M ∈ Mod(T ′

1), and then 
M ∈ Mod(T ′ ). Let M′ ∈ Mod(T ◦ T ′ ) \ T riv . Such a model exists as T ◦ T ′ is consistent. By Postulate (G2) and the 
2 2 2
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hypothesis that Cn(T ′
1) = Cn(T ′

2), {M, M′}∗ contains both T ′
1 and T ′

2. Obviously, we have that (T ◦ T ′
1) ∪{M, M′}∗ and 

(T ◦ T ′
2) ∪ {M, M′}∗ are consistent. Therefore, by Postulates (G5) and (G6), we have that Mod((T ◦ T ′

1) ∪ {M, M′}∗) =
Mod((T ◦(T ′

1 ∪{M, M′}∗) = Mod(T ◦{M, M′}∗) and Mod((T ◦ T ′
2) ∪{M, M′}∗) = Mod((T ◦(T ′

2 ∪{M, M′}∗) = Mod(T ◦
{M, M′}∗). We can then derive that Mod((T ◦ T ′

1) ∪ {M, M′}∗) = Mod((T ◦ T ′
2) ∪ {M, M′}∗), and conclude that M ∈

Mod(T ◦ T ′
2). Similarly, by reversing the roles of T ′

1 and T ′
2, if M ∈ Mod(T ◦ T ′

2), we can conclude that M ∈ Mod(T ◦ T ′
1).

Proof of Theorem 1.

(1) Let us suppose that ◦ satisfies AGM Postulates. For every knowledge base T , let us define the binary relation �T ⊆
Mod × Mod by: for all M, M′ ∈ Mod,

M �T M′ iff

{
either M ∈ Mod(T )

or M ∈ Mod(T ◦ {M,M′}∗) and M′ /∈T riv

Let us first show that �T satisfies the two conditions of FA.
• The first condition easily follows from the definition of �T .
• To prove the second one, let us assume that M ∈ Mod(T ) and M′ /∈ Mod(T ). Since M ∈ Mod(T ), we have M �T M′ . 

Here two cases have to be considered:
(a) M ∈ T riv . In this case, we directly have by definition that M′ �T M.
(b) M /∈ T riv . Then T ∪ {M, M′}∗ is consistent since M ∈ Mod(T ) \ T riv and M ∈ Mod(M∗) ⊆ Mod({M, M′}∗). 

Then by Postulate (G3), we have that T ◦ {M, M′}∗ = T ∪ {M, M′}∗ . Therefore, we have that M′ /∈Mod(T ◦
{M, M′}∗), and M′ �T M.

Hence M ≺T M′ in both cases.
Let us now prove the three supplementary conditions.
• First, let us show that Mod(T ◦ T ′) = Min(Mod(T ′) \ T riv, �T ). If T ′ is inconsistent, then by Proposition 2 Mod(T ′) \

T riv = ∅, and by (G2) Mod(T ◦ T ′) ⊆ Mod(T ′) ⊆ T riv , hence Mod(T ◦ T ′) \ T riv = ∅ = Min(Mod(T ′) \ T riv, �T ).
Let us assume now that T ′ is consistent.
· Let us first show that Mod(T ◦ T ′) \ T riv ⊆ Min(Mod(T ′) \ T riv, �T ). Let M ∈ Mod(T ◦ T ′) \ T riv . Let us assume 

that M /∈ Min(Mod(T ′) \ T riv, �T ). By (G2), M ∈ Mod(T ′) \ T riv . By hypothesis, there exists M′ ∈ Mod(T ′) \ T riv
such that M′ ≺T M. Here, two cases have to be considered:
(a) M′ ∈ Mod(T ). As M′ ∈ Mod(T ′) \ T riv , then T ∪ T ′ is consistent, and then by (G3), T ◦ T ′ = T ∪ T ′ . Thus, 

M ∈ Mod(T ), and then M �T M′ , which is a contradiction.
(b) M′ /∈ Mod(T ). By definition of �T , this means that M′ ∈ Mod(T ◦ {M, M′}∗). As M, M′ ∈ Mod(T ′), by 

Postulate (G2), (T ◦ T ′) ∪ {M, M′}∗ is consistent, and then by Postulates (G5) and (G6), we have that 
Mod(T ◦ {M, M′}∗) = Mod((T ◦ T ′) ∪ {M, M′}∗). By the hypothesis that M′ ≺T M, we can deduce that 
M /∈ Mod(T ◦ {M, M′}∗), whence by Postulate (G6) we have that M /∈ Mod(T ◦ T ′) \ T riv , which is a con-
tradiction.

Finally we can conclude that M ∈ Min(Mod(T ′) \ T riv, �T ), and then Mod(T ◦ T ′) \ T riv ⊆ Min(Mod(T ′) \ T riv, �T ).
· Let us now show that Min(Mod(T ′) \ T riv, �T ) ⊆ Mod(T ◦ T ′) \ T riv . Let M ∈ Min(Mod(T ′) \ T riv, �T ). Let us 

assume that M /∈ Mod(T ◦ T ′) \ T riv . As T ′ is consistent, by Postulates (G1) and (G2), there exists M′ ∈ Mod(T ◦ T ′)
such that M′∗ �= Sen, and M′ ∈ Mod(T ′). Since T ′ ⊆ {M, M′}∗ , we also have that Mod(T ′ ∪ {M, M′}∗) =
Mod({M, M′}∗). By Postulates (G5) and (G6), we can write Mod(T ◦ T ′) ∩ Mod({M, M′}∗) = Mod(T ◦ {M, M′}∗), 
since (T ◦ T ′) ∪ {M, M′}∗ is consistent. Hence, M /∈ Mod(T ◦ {M, M′}∗), and then M′ ≺T M, which is a contra-
diction. We can conclude that M ∈ Mod(T ◦ T ′) \ T riv , and then Min(Mod(T ′) \ T riv, �T ) ⊆ Mod(T ◦ T ′) \ T riv .

• Secondly, let us show that Min(Mod(T ′) \ T riv, �T ) �= ∅ if T ′ is consistent. By Postulate (G1), we have that T ◦ T ′
is consistent, and then Mod(T ◦ T ′) \ T riv �= ∅. We can directly conclude by the previous point that Min(Mod(T ′) \
T riv, �T ) �= ∅.

• Finally, let us show that for every T ′, T ′′ ⊆ Sen, Min(Mod(T ′) \ T riv, �T ) ∩ Mod(T ′′) = Min(Mod(T ′ ∪ T ′′) \ T riv, �T )

if (T ◦ T ′) ∪ T ′′ is consistent. By (G5) and (G6), we have that Mod(T ◦ (T ′ ∪ T ′′)) = Mod((T ◦ T ′) ∪ T ′′). Therefore, by 
the first point, we can directly conclude that Min(Mod(T ′) \ T riv, �T ) ∩ Mod(T ′′) = Min(Mod(T ′ ∪ T ′′) \ T riv, �T ).

(2) Let us now suppose that for a revision operation ◦ there exists a FA which maps any knowledge base T ⊆ Sen to a 
binary relation �T ⊆ Mod × Mod satisfying the three conditions of Theorem 1. Let us prove that ◦ verifies the AGM 
Postulates.
(G1) This postulate directly results from the fact that Min(Mod(T ′) \T riv, �T ) �= ∅ when T ′ is consistent, hence Mod(T ◦

T ′) \ T riv �= ∅.
(G2) Let M ∈ Mod(T ◦ T ′). If M ∈ T riv , then obviously M ∈ Mod(T ′). Now, if M /∈ T riv , then by definition, M ∈

Min(Mod(T ′) \ T riv, �T ). This means that M ∈ Mod(T ′).
(G3) Suppose that T ∪ T ′ is consistent (hence Mod(T ∪ T ′) \ T riv �= ∅).

• Let us first prove that Mod(T ◦ T ′) ⊆ Mod(T ∪ T ′). Let M ∈ Mod(T ◦ T ′). Here two cases have to be considered:
(a) M ∈ T riv . In this case, we obviously have that M ∈ Mod(T ∪ T ′).
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(b) M /∈ T riv . By definition, M ∈ Min(Mod(T ′) \ T riv, �T ). Hence, we have that M ∈ Mod(T ′). Let us sup-
pose now that M/∈Mod(T ). As T is consistent, Mod(T ) \ T riv �= ∅ by Proposition 2. Therefore, there exists 
M′ ∈ Mod(T ) \ T riv such that M′ ≺T M (from M /∈ Mod(T ) and the second property of FA), which is a 
contradiction. Hence M ∈ Mod(T ) and M ∈ Mod(T ∪ T ′).

• Let us now prove that Mod(T ∪ T ′) ⊆ Mod(T ◦ T ′). Let M ∈ Mod(T ∪ T ′) such that M/∈Mod(T ◦ T ′). Therefore, 
M ∈ Mod(T ). By hypothesis, there exists M′ ∈ Mod(T ′) \ T riv such that M′ ≺T M (since M /∈ Min(Mod(T ′) \
T riv, �T )), and then M′ /∈Mod(T ) by the first condition of FA. However, by the second condition of FA, we have 
that M ≺T M′ , which is a contradiction.

Finally, we can conclude that Mod(T ◦ T ′) = Mod(T ∪ T ′).
(G5) Let M ∈ Mod(T ◦ T ′) ∩ Mod(T ′′). Let us assume that M/∈Min(Mod(T ′ ∪ T ′′) \ T riv, �T ). This means that M ∈ T riv

or there exists M′ ∈ Mod(T ′ ∪ T ′′) such that M′∗ �= Sen and M′ ≺T M. In the first case, we obviously have 
that M ∈ Mod(T ◦ (T ′ ∪ T ′′)). In the second case, we then have that M′ ∈ Mod(T ′), and then M′⊀TM since 
M ∈ Min(Mod(T ′) \ T riv, �T ), which is a contradiction.

(G6) Let us suppose that (T ◦ T ′) ∪ T ′′ is consistent. Let M ∈ Mod(T ◦ (T ′ ∪ T ′′)). By hypothesis, either M ∈ T riv and in 
this case, obviously we have that M ∈ Mod((T ◦ T ′) ∪ T ′′), or M ∈ Min(Mod(T ′ ∪ T ′′) \ T riv, �T ) as Mod(T ◦ (T ′ ∪
T ′′))\T riv = Min(Mod(T ′ ∪ T ′′) \ T riv, �T ). As (T ◦ T ′) ∪ T ′′ is consistent, we have that Min(Mod(T ′ ∪ T ′′) \ T riv,

�T ) = Min(Mod(T ′) \ T riv, �T ) ∩ Mod(T ′′) and then M ∈ Mod((T ◦ T ′) ∪ T ′′).

Proof of Theorem 2. First, let us show that f is a FA.

• Let M, M′ ∈ Mod(T ). Let us suppose that M ≺T M′ . This means that there exists T ′ ⊆ Sen such that M, M′ ∈
Mod(T ′), M ∈ Mod(T ◦ T ′) and M′ /∈ Mod(T ◦ T ′). Hence we have that T ∪ T ′ is consistent, and then by Postulate (G3), 
T ◦ T ′ = T ∪ T ′ . We then have that M′ ∈ Mod(T ◦ T ′) which is a contradiction.

• Let M ∈ Mod(T ) and let M′ ∈ Mod \ Mod(T ). We have that M �∅
T M′ , and then M �T M′ by definition of �T . Now, 

let us suppose that M′ �T M. This means that there exists T ′ ⊆ Sen such that M, M′ ∈ Mod(T ′), M′ ∈ Mod(T ◦ T ′)
and M /∈ Mod(T ◦ T ′). But, as M ∈ Mod(T ), we have that T ∪ T ′ is consistent, and then by Postulate (G3), T ◦ T ′ = T ∪ T ′ . 
Hence, we have that M ∈ Mod(T ◦ T ′) which is a contradiction.

Let us show now the supplementary conditions of Theorem 1.

• First, let us show that Mod(T ◦ T ′) \ T riv = Min(Mod(T ′) \ T riv, �T ). The case where T ′ is inconsistent follows the same 
proof as in Theorem 1.
Let us suppose that T ′ is consistent. Let M ∈ Mod(T ◦ T ′) \ T riv . Let us suppose that M /∈ Min(Mod(T ′) \ T riv, �T ). 
This means that there exists M′ ∈ Mod(T ′) \ T riv such that M′ ≺T M. Therefore, there exists T ′′ ⊆ Sen such that 
M, M′ ∈ Mod(T ′′), M′ ∈ Mod(T ◦ T ′′) and M /∈ Mod(T ◦ T ′′). Hence, both (T ◦ T ′) ∪ T ′′ and (T ◦ T ′′) ∪ T ′ are consistent, 
and then by Postulates (G5) and (G6), Mod((T ◦ T ′) ∪ T ′′) = Mod((T ◦ T ′′) ∪ T ′) = Mod(T ◦ (T ′ ∪ T ′′)). We can then derive 
that M ∈ Mod(T ◦ T ′′) which is a contradiction.
Let M ∈ Min(Mod(T ′) \ T riv, �T ). Let us suppose that M /∈ Mod(T ◦ T ′) \ T riv . As T ′ is consistent, by Postulates (G1) 
and (G2), there exists M′ ∈ Mod(T ◦ T ′) \ T riv . By definition of �T ′

T , we have that M′ �T ′
T M, and then M′ �T M

which is a contradiction.
• The proof of the two other conditions corresponds to the one given in Theorem 1.

Proof of Proposition 4. It is sufficient to show that �1
T ∪ �2

T and �1
T ∩ �2

T satisfy Conditions (1) and (2) of Definition 4 plus 
all the conditions of Theorem 1.

Let us first show that they are FA. Let T ⊆ Sen. Let M, M′ ∈ Mod(T ). By definition of FA, then we have either M�i
T M′

and M′�i
TM or M �i

T M′ and M′ �i
T M for i = 1, 2. We then have four cases to consider, but for f1 � f2(T ) =�T (resp. 

f1 � f2(T ) =�T ), we always end up at either M�TM′ and M′�TM or M �T M′ and M′ �T M. Likewise, for every 
M ∈ Mod(T ) and every M′ ∈ Mod \ Mod(T ), we have that M ≺i

T M′ for i = 1, 2. Therefore, it is obvious to conclude that 
M ≺T M′ .

Now, by the first supplementary condition for �1
T and �2

T in Theorem 1, we have for every T ′ ⊆ Sen that Min(Mod(T ′) \
T riv, �1

T ) = Min(Mod(T ′) \ T riv, �2
T ) = Mod(T ◦ T ′) \ T riv . Hence, we can write that Min(Mod(T ′) \ T riv, �1

T ∪ �2
T ) =

Min(Mod(T ′) \ T riv, �1
T ∩ �2

T ) = Min(Mod(T ′) \ T riv, �i
T ) for i = 1, 2. The three supplementary conditions are then straight-

forward, and this allows us to directly conclude that f1 � f2 and f1 � f2 are FA+.

Proof of Theorem 3. ◦ obviously satisfies Postulates (G1), (G2) and (G3). To prove (G5)–(G6), let us suppose T , T ′, T ′′ ⊆ Sen

such that (T ◦T ′) ∪T ′′ is consistent (the case where (T ◦T ′) ∪T ′′ is inconsistent is obvious). This means that ρKT ′
T (T ) ∪T ′ ∪T ′′

is consistent. Now, obviously we have that Mod(T ′ ∪ T ′′) ⊆ Mod(T ′). Hence, by the second and the third conditions of 
Definition 7, we necessarily have that T ◦ (T ′ ∪ T ′′) = ρKT ′

T (T ) ∪ T ′ ∪ T ′′ , and then Mod((T ◦ T ′) ∪ T ′′) = Mod(T ◦ (T ′ ∪ T ′′)).

Proof of Theorem 4. Let T ⊆ Sen. Let us first show that fρ(T ) = �T is faithful.
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• Obviously, we have for every M, M′ ∈ Mod(T ) and every T ′ ⊆ Sen that both M�T ′
T M′ and M′�T ′

T M. Hence the 
same relations hold for �T .

• Let M ∈ Mod(T ) and let M′ ∈ Mod \ Mod(T ). Obviously, we have that M �∅
T M′ . Let T ′ ⊆ Sen such that M, M′ ∈

Mod(T ′) (the case where for all T ′ ⊆ Sen M or M′ is not in Mod(T ′) implies that M and M′ are incomparable by 
�T ′

T , and then we directly have that M′�TM). Here two cases have to be considered:

(1) M ∈ T riv . As M′ /∈Mod(T ), then M′ /∈T riv . Hence, there does not exist K′ < K such that M′ ∈ Mod(ρK′
(T )). 

Otherwise, ρK′
(T ) ∪ T ′ would be consistent, which would contradict the hypothesis that T ◦ T ′ = ρK(T ) ∪ T ′ .

(2) M/∈T riv . We have that M ∈ Mod(T ∪ T ′) but M′ /∈Mod(T ∪ T ′), and then M′�T ′
T M By definition of ◦.

Hence, in both cases we can conclude that M′�TM.

Let us prove that Mod(T ◦ T ′) \ T riv = Min(Mod(T ′) \ T riv, �T ). This will directly prove that Min(Mod(T ′) \ T riv, �T ) �= ∅
when T ′ is consistent. Indeed, by definition, we have that T ◦ T ′ is consistent when T ′ is consistent, and then Min(Mod(T ′) \
T riv, �T ) �= ∅ if Mod(T ◦ T ′) \ T riv = Min(Mod(T ′) \ T riv, �T ).

If T ′ is inconsistent, then so is T ◦ T ′ by definition. Hence, Mod(T ◦ T ′) \ T riv = Min(Mod(T ′) \ T riv, �T ) = ∅.
Let us now suppose that T ′ is consistent.

• Let us show that Mod(T ◦ T ′) \ T riv ⊆ Min(Mod(T ′) \ T riv, �T ). Let M ∈ Mod(T ◦ T ′) \ T riv . Let M′ ∈ Mod(T ′) \ T riv . 
Two cases have to be considered:
(1) M′ ∈ Mod(T ◦ T ′). Obviously, we have both M�T ′

T M′ and M′�T ′
T M. Let us show that this is also true for every 

T ′′ ⊆ Sen such that M, M′ ∈ Mod(T ′′). Let us suppose that there exists T ′′ ⊆ Sen such that M′ �T ′′
T M. By hy-

pothesis, we then have that (T ◦ T ′) ∪ T ′′ is consistent. Therefore, by Conditions 2 and 3 of Definition 7, we have 
that (T ◦ T ′) ∪ T ′′ = T ◦ (T ′ ∪ T ′′). Hence, we also have that T ◦ (T ′ ∪ T ′′) = ρKT ′

T (T ) ∪ T ′ ∪ T ′′ . Consequently, as 
Mod(T ′ ∪ T ′′) ⊆ Mod(T ′′), we have by Condition 3 of Definition 7 that KT ′′

T ≤KT ′
T . Therefore, as M′ �T ′′

T M, we can 
deduce that there exists K′′ <KT ′

T such that M′ ∈ Mod(ρK′′
(T )). We then have that ρK′′

(T ) ∪ T ′ is consistent, and 
then by Condition 2 of Definition 7, 

∑
KT ′

T ≤ ∑
K′′ , which is a contradiction.

(2) M′ /∈Mod(T ◦ T ′). By definition of �T ′
T , we have that M �T ′

T M′ , and therefore M �T M′ .
Finally, we can conclude that M ∈ Min(Mod(T ′) \ T riv, �T ).

• Let us now show that Min(Mod(T ′) \ T riv, �T ) ⊆ Mod(T ◦ T ′) \ T riv . Let M ∈ Min(Mod(T ′) \ T riv, �T ). Let us suppose 
that M/∈Mod(T ◦ T ′) \ T riv . As T ′ is consistent, then so is T ◦ T ′ . Hence, there exists M′ ∈ Mod(T ◦ T ′) \ T riv . As 
M ∈ Mod(T ′) \ Mod(T ◦ T ′), we have that M′ �T ′

T M, and then as M ∈ Min(Mod(T ′) \ T riv, �T ) we also have that 
M �T M′ . This means that there exists T ′′ ⊆ Sen such that M, M′ ∈ Mod(T ′′) and M �T ′′

T M′ . By hypothesis, we 
then have that (T ◦ T ′) ∪ T ′′ is consistent. Therefore, by Conditions 2 and 3 of Definition 7, we have that (T ◦ T ′) ∪ T ′′ =
T ◦ (T ′ ∪ T ′′). Hence, we also have that T ◦ (T ′ ∪ T ′′) = ρKT ′

T (T ) ∪ T ′ ∪ T ′′ . Consequently, we have by Condition 3 of 
Definition 7 that KT ′′

T ≤ KT ′
T . Hence, there exists K′′ ≥ KT ′′

T such that K′′ < KT ′
T and M ∈ Mod(ρK′′

(T )). We can then 
deduce that ρK′′

(T ) ∪ T ′ is consistent, and then by Condition 2 of Definition 7 we have that 
∑

KT ′
T ≤ ∑

K′′ , which is a 
contradiction.

Finally, to prove the last point, we follow the same steps as in the proof of Theorem 1.

Proof of Proposition 15. The proof relies on the following general result:

∀C,∀r,∀r.C � ∃r.C

Indeed, for each interpretation I , if rIi �= ∅, we have

x ∈ (∀r.C)I ⇒ (∀y, (x, y) ∈ rI ⇒ y ∈ CI) ⇒ (∃y, (x, y) ∈ rIand y ∈ CI) ⇒ x ∈ (∃r.C)I .

Hence (∀r.C)I ⊆ (∃r.C)I for each I (if rIi = ∅ it is obvious), and ∀r.C � ∃r.C .
In a similar way, we can show, that for any C1, C2, r, and Q ∈ {∃, ∀}:

C1 � C2 ⇒ Q r.C1 � Q r.C2.

Now, let us consider any j such that Q j = ∃, and set C ′ = Q j+1r j+1...Q nrn.D . We have from the first result Q ′
jr j .C ′ �

Q jr j .C ′ . Applying the second result recursively on each Q i for i < j, we then have

Q 1r1...Q j−1r j−1 Q ′
jr j.C

′ � Q 1r1...Q j−1r j−1 Q jr j.C
′.

The same relation holds for the conjunction over any j such that Q j = ∃, from which we conclude that ∀C, κq(C) � C , i.e. 
κq is anti-extensive.
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