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CT acquisition systems
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Principle of X-ray tomography

Attenuation for a monochromatic X-ray beam:

I = I0 exp(−
∫ +∞

−∞
fdv)

f (x , y) = attenuation at point (x , y) = function to be reconstructed

Acquisition of projections

I. Bloch Tomographic Reconstruction 4 / 36



Other modalities

nuclear imaging (SPECT, PET)

electric impedance tomography

...

Different physical principles - Similar reconstruction problems.
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Radon transform

R[f ](u, θ) = pθ(u)

=

∫
Dθ

f (u cos θ − v sin θ, u sin θ + v cos θ)dv

Note that pθ(u) = pθ+π(−u)

Reconstruction:

{pθ(u), θ ∈ [0, π[, u ∈ R} → {f (x , y), (x , y) ∈ R2}
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Sinogram
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Backprojection

of a projection :

hθ(x , y) = pθ(x cos θ + y sin θ)

(value at (x , y) of the projection of angle θ
at point on which (x , y) projects)

of all projections:

B[p](x , y) =

∫ π

0
pθ(x cos θ + y sin θ)dθ
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Inversion - 1

Projection theorem

FT [pθ](U) = FT [f ](U cos θ,U sin θ)

(FT = Fourier transform)

⇒ Reconstruction scheme:

{pθ(u)}
⇓

{FT [pθ](U)}
⇓

FT [f ](X ,Y )
⇓

f using inverse FT

= Direct inversion (1D FT + 2D IFT)
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Inversion - 2

Backprojection theorem

B[p](x , y) = (f ∗ h)(x , y)

with h(x , y) = 1√
x2+y2

⇒ reconstruction using deconvolution:

f = IFT [ FT (B[p]) . ρ ]

with ρ(X ,Y ) =
√
X 2 + Y 2

(2D filtering and FT)
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Inversion - 3

Filtered backprojection
f = B[p̃]

with p̃θ = IFT [ FT [pθ](U) . |U| ]

⇒ reconstruction scheme:

filtering of projections (1D)
⇓

backprojection of filtered projections

In practice: filtering using H(U) = |U| .W (U)
W (U): low-pass filter
⇒ compromise spatial resolution / noise
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Digitization

Ideal continuous and infinite case:
domain R2

continuous function f
continuous pθ, known ∀θ ∈ [0, π[

In practice:
pθ for a finite number of θk (acquisition system)
pθk known at discrete points ul (detectors)
reconstruction of f at a finite number of points (algorithms and
computation)

reconstruction:
{pθk (ul), 0 ≤ l < NP, 0 ≤ k < M}
→ {f (xi , yj), 0 ≤ i < N, 0 ≤ j < N}

with:
θk = k∆θ, ∆θ =

π

M
, ul = ld

xi = i∆x , yj = j∆y
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Two classes of methods in the discrete case

Analytical methods:

◦ discrete operators
◦ digitization of inversion formulas

Algebraic methods:

◦ digitization of projection equation
◦ solving a linear system of equations
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Discrete analytical methods

Discrete operators

DFT:

Fk =
N−1∑
l=0

fl exp(
−2π

N
lk)

spectrum overlap issue ⇒ Shannon
⇒ hypothesis of limited spectrum
Discrete backprojection:

B[p](xi , yj) =
π

M

M−1∑
k=0

pθk (xi cos θk + yj sin θk)

xi cos θk + yj sin θk 6= ul

⇓
interpolation

or pre-interpolation of pθ
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Reconstruction using direct inversion

DFT [pθk ](Ul) = DFT [f ](Ul cos θk ,Ul sin θk)

⇒ reconstruction scheme:

{pθk (ul)}
⇓

{DFT [pθ](Ul)}
⇓

estimation of FT [f ] in polar coordinates
⇓

interpolation polar / Cartesian coordinates
⇓

f using IDFT
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Sampling

Projections: d ⇒ B = 1
2d

Fourier domain:

radial: ρ = 2B
NP = 1

dNP

azimutal: ε = ρ ⇒ ∆θ = 2
NP

or: ε′ = ρ3B/4 = 3
4B∆θ = 2B

NP ⇒ ∆θ = 8
3NP

⇒ M(number of projections)
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Reconstruction using 2D deconvolution

discrete backprojection of all projections

deconvolution using DFT

on a larger image (to avoid aliasing)
filter + window (to cope with noisy data)
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Reconstruction using discrete filtered backprojection
Filtering of projections:

B =
1

2d

⇓

FT (k)(U) =

{
|U| if |U| < B
0 otherwise

Ramachandran and Lakshminarayanan :

FT (k̂)(U) = |U|RectB(U)

⇒ k̂(u) = 2B2

(
sin(2πBu)

2πBu

)
− B2

(
sin(πBu)

πBu

)2

⇒ k(
m

2B
) =


B2 if m = 0
0 if m even and 6= 0
−4B2

m2π2 if m odd
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Shepp and Logan :

FT (k̂)(U) = |U|RectB(U)
sin(πU2B )

πU
2B

⇒ k(
m

2B
) =

−4B2

π2(4m2 − 1)

Other windows: cosinus, Hamming, etc.

Implementation:

discrete convolution
or in the Fourier domain (using FFT)

Advantages:

1D computations
every projection can be processed as soon as it is acquired
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Algebraic reconstruction methods

f written as:

f (x , y) =
n∑

i=1

fiϕi (x , y)

Most used basis: pixel basis

ϕi (x , y) =

{
1 if (x , y) = pixel i
0 otherwise

⇓

pj =
n∑

i=1

Rji fi

⇓

p = Rf

with pj = pθk (ul) and Rji =
∫
ϕi (ul cos θk − v sin θk , ul sin θk + v cos θk)dv
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p: measurement vector (all projection values)

size m = M × NP = number of projections × number of points /
projection

f : vectorized image values (to be computed)

size n = N × N = number of pixels

R: projection matrix

size m × n
depends only on the acquisition design

Rji =

{
1 if ray j meets pixel i
0 otherwise

or:
Rji ∝ overlap between ray j and pixel i
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Problems with direct inversion:

Size of the matrix (at least 250000 × 250000)

A lot of 0

Noise

⇒ Iterative methods

ART: correction of fi by using one projection at each iteration

SIRT: correction of fi by using all rays passing through xi
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ART

f
(k)
i = f

(k−1)
i + Rji

pj − Rj f
(k−1)

‖Rj‖2

j = k[m] + 1
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Noisy case

⇒ oscillations
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SIRT

f
(k)
i = f

(k−1)
i +

∑
j pj∑

j

∑
i Rji
−
∑

j Rj f
(k−1)∑

j ‖Rj‖2
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Limitations

Physics:

◦ non-monochromatic, non infinitely thin rays
◦ beam hardening
◦ scattering
◦ patient’s movements

Incomplete data:

◦ low number of projections (e.g. cardiac imaging)
◦ noisy data

⇒ ill-posed problem
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Well-posed problem (Hadamard)

at least one solution for each data set

uniqueness of the solution

the solution is a continuous function of the data

Here, for tomography: ill-posed problem

⇒ Regularization
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Least square solution

Rf = p

but R−1 may not exist, may be ill-conditioned...
Approximation:

minC (RF , p)

C : dissimilarity criterion

Least square solution:
f = (RtR)−1Rtp

if Rank(R) = n
otherwise infinite set of solutions

⇒ minimal norm solution

But can be instable / ill-conditioned
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Stability analysis

σ2
k : eigenvalues of RtR and of RRt (σ1 > σ2 > ... ≥ 0)

RRtpk = σ2
kpk , RtRfk = σ2

k fk

for σk 6= 0: pk = σ−1
k Rfk , fk = σ−1

k Rtpk

f = (RtR)−1Rtp = (RtR)−1Rt(
∑
k

< p.pk > pk)

= (RtR)−1(
∑
k

< p.pk > σk fk) =
∑
k

< p.pk > σ−1
k fk

Noisy data ⇒ measures p + b

f =
∑
k

< p.pk > σ−1
k fk+

∑
k

< b.pk > σ−1
k fk

High frequency noise ⇒ large coefficients for the small eigenvalues (large
values σ−1

k ) – cf. restoration
⇒ instability
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Regularization

troncate the decomposition (cf. restoration using SVD)

weakening small eigenvalues:

f =
∑
k

wkσ
−1
k < p.pk > fk

stable solution + regularity constraints

min J(f ) = ‖Rf − p‖2 + γΓ(f )

e.g. Γ(f ) = ‖f ‖2 ⇒
f = (RtR + γI )−1Rtp

⇒ f =
∑
k

σk
σ2
k + γ

< p.pk > fk

compromise precision / stability
introduction of other prior information in the regularization term
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Extensions

Non-parallel geometry:

Neglect divergence and use parallel approximation
⇒ acceptable error if beam angle < 15 degrees

Reorganize data into parallel projections

Reformulate the problem:

◦ projection theorem does not apply
⇒ no direct reconstruction
◦ adaptation of backprojection theorem
⇒ similar algorithm
◦ correction of filtered backprojection formulas
⇒ slightly different algorithms
◦ algebraic methods: adaptation of R
⇒ the simplest method
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Other methods:

statistical / Bayesian approaches

3D

structural approaches

...
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