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Analytical methods
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CT acquisition systems
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Principle of X-ray tomography

Attenuation for a monochromatic X-ray beam:

+oo
=1 exp(—/ fdv)

f(x,y) = attenuation at point (x,y) = function to be reconstructed

source X
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Acquisition of projections \ 1
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Other modalities

m nuclear imaging (SPECT, PET)
m electric impedance tomography

Different physical principles - Similar reconstruction problems.
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Radon transform

R[f1(u,0) = po(u)

= f(ucos® — vsinf, usinf + v cos)dv
Dy

Note that py(u) = ppr(—u)

Reconstruction:

L{po(v), 00,7, ue R} — {f(x.y), (x.y) ER?} |
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Backprojection

m of a projection :
ho(x,y) = pa(xcosf + ysin )

(value at (x, y) of the projection of angle #
at point on which (x,y) projects)

m of all projections:

Blp]l(x,y) = / po(x cosf + y sin)d6
0
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Projection theorem
FTpe](U) = FT[f](Ucos®, Usin®)

(FT = Fourier transform)

= Reconstruction scheme:

{Peﬁu)}
{FT[FE](U)}
FT[f](X,Y)

N3

f using inverse FT

= Direct inversion (1D FT + 2D IFT)
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Backprojection theorem
Blp](x,y) = (f * h)(x.v)

with h(x,y) = \/><21Ty2

= reconstruction using deconvolution:
f=IFT [FT(B[p]) . p]
with p(X, Y) = VX2 + Y?

(2D filtering and FT)
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Filtered backprojection

f = Blf
with iy = IFT [ FT[pg}(U) . |U] ]

= reconstruction scheme:

filtering of projections (1D)
I

backprojection of filtered projections

In practice: filtering using H(U) = |U| . W(U)
W(U): low-pass filter
= compromise spatial resolution / noise
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Digitization

m ldeal continuous and infinite case:
m domain R?
m continuous function f
m continuous py, known V@ € [0, 7|
m In practice:
m py for a finite number of 8, (acquisition system)
m pp, known at discrete points u; (detectors)
m reconstruction of f at a finite number of points (algorithms and
computation)

reconstruction:
{pgk(ul), 0<I<NPO<Lk< M}
— {f(xi,y),0<i<N,0<j<N}

with: -
0, = kAG, AO = w up = Id

xj = IAx, y;j=jAy
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Two classes of methods in the discrete case

m Analytical methods:

o discrete operators
o digitization of inversion formulas

m Algebraic methods:

o digitization of projection equation
o solving a linear system of equations
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Discrete analytical methods

Discrete operators
m DFT:

spectrum overlap issue = Shannon
= hypothesis of limited spectrum
m Discrete backprojection:
o M1
Blpl(xi, yj) = i Z Py, (xi cos O + y;sin Oy)
k=0
xj cos Oy + yjsin Oy # uj
\
interpolation
or pre-interpolation of py
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Reconstruction using direct inversion

DFT[pgk](U/) = DFT[f](U/ Cos 9;(, U/ sin 9;()

= reconstruction scheme:

{po, (ur)}
Y
{DFT{py](Up)}
4
estimation of FT[f] in polar coordinates
I

interpolation polar / Cartesian coordinates

I
f using IDFT
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Sampling
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Projections: d = B =4

Fourier domain:

m radial: p=28 = _1;

m azimutal: e=p = Af= %
mor & =pigu=3BAI=35 = A=z
= M(number of projections)
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Reconstruction using 2D deconvolution

m discrete backprojection of all projections
m deconvolution using DFT

m on a larger image (to avoid aliasing)
m filter + window (to cope with noisy data)
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Reconstruction using discrete filtered backprojection
Filtering of projections:

(U] if|U<B
FT(k)(U) = { 0 otherwise

m Ramachandran and Lakshminarayanan :

FT(k)(U) = |U|Rectg(U)
N in(2wBu) sin(7Bu)\ 2
k —92RB2 L _ g2 (22"
= (u) ( 27 Bu 7Bu
B2 if m=0
= k(%) =<0 if mevenand #0
4B if m odd
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m Shepp and Logan :

FT(R)(U) = |U|Rects () 28)
2
m —4B?
= *op) = e 1)

m Other windows: cosinus, Hamming, etc.
m Implementation:

m discrete convolution
m or in the Fourier domain (using FFT)

m Advantages:

m 1D computations
B every projection can be processed as soon as it is acquired
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~ rampe

rampe * rect (RAM-LAK)

mpe * rect * sinc(piU/2B) /
(Shepp & Logan)  ——— /

rampe * rect * cos(piU/2B)
(Cosinus)

rampe * rect * (a + (1-a)cos(piU/B))
| (Hamming)




Algebraic reconstruction methods

f written as: .
f(va) = Z fiSOi(X»)’)
i=1
Most used basis: pixel basis

1if (x,y) = pixel i
0 otherwise

I3
n

pj = Z R;if;
i—1

3
p=Rf

pi(x,y) = {

with p; = py, (u/) and Rji = [ i(ujcos by — vsin by, uysin Oy + v cos b )dv
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m p: measurement vector (all projection values)

size m = M x NP = number of projections x number of points /
projection

m f: vectorized image values (to be computed)
size n = N x N = number of pixels
m R: projection matrix

size mxXn
depends only on the acquisition design

R

o { 1 if ray j meets pixel i
i =

0 otherwise

or:
Rji oc overlap between ray j and pixel i
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X11X2

Xj (fi)

=
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Problems with direct inversion:

m Size of the matrix (at least 250000 x 250000)
m Alot of 0
m Noise

= lterative methods

m ART: correction of f; by using one projection at each iteration

m SIRT: correction of f; by using all rays passing through x;
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solution

fiRy 1+ R,=P

fi

iR+ fRp=P >

— Rif(k=1)
IR
j=k[ml+1

(9 _ ) | g P
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Noisy case

constraint 1

constraint 2

= oscillations
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m Physics:

non-monochromatic, non infinitely thin rays
beam hardening

scattering

patient’s movements

O O O O

m Incomplete data:

o low number of projections (e.g. cardiac imaging)
o noisy data

= ill-posed problem
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Well-posed problem (Hadamard)

m at least one solution for each data set
m uniqueness of the solution
m the solution is a continuous function of the data

Here, for tomography: ill-posed problem

= Regularization
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Least square solution

Rf =p

but R~ may not exist, may be ill-conditioned...
Approximation:

min C(RF, p)

C: dissimilarity criterion

Least square solution:
f=(R'R)"'R'p

if Rank(R) =n
otherwise infinite set of solutions
= minimal norm solution

But can be instable / ill-conditioned
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Stability analysis

o2: eigenvalues of R'R and of RR (01 > 05 > ... > 0)
RRip; = oipk, R'Rfc = o2f,
for o #£0: px = O';lRfk, f = 0;1Rtpk

f = (R'R)'R'p=(R'R) R (D < p.pi > pi)
k

= (RtR)_l(Z < p.pk > okfx) = Z < p.pi > a;lfk
k k
Noisy data = measures p + b

f= Z < p.px > a;lfﬁ-z < b.px > a;lfk
k k

High frequency noise = large coefficients for the small eigenvalues (large
values 0;1) — cf. restoration
= instability
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Regularization

m troncate the decomposition (cf. restoration using SVD)
m weakening small eigenvalues:

f= Z WkO',:1 < p.px > f
k

m stable solution + regularity constraints
min J(f) = |Rf — p|® + T (f)
e.g. [(f)=|f|?

[F= (RtR+fyl ) TR'p |

=f=> 2o <PPe>fi
k

k

m compromise precision / stability
m introduction of other prior information in the regularization term
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Non-parallel geometry:

m Neglect divergence and use parallel approximation
= acceptable error if beam angle < 15 degrees

m Reorganize data into parallel projections

m Reformulate the problem:

o projection theorem does not apply
= no direct reconstruction

o adaptation of backprojection theorem
= similar algorithm

o correction of filtered backprojection formulas
= slightly different algorithms

o algebraic methods: adaptation of R
= the simplest method
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Other methods:

m statistical / Bayesian approaches
3D
structural approaches
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