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ABSTRACT
An automated, level-set based, segmentation framework is proposed
in this work for computation of tumoral volumes on mice brain bear-
ing gliomal tumors. T1 and T2 weighted MRI images were acquired
to monitor tumor growth, at different time points. We developed an
original multi-phase and multi-channel segmentation method, based
on the level set framework of Chan and Vese, to facilitate the es-
timation of tumoral volumes. A clinical study comparing manual
and segmented volumes on 18 mice demonstrate the adequacy of the
multi-channel segmentation and its superiority over single-T1 chan-
nel automated segmentation in terms of measurement accuracy and
correlation.

Index Terms— Segmentation, level set, MRI, multi-phase,
multi-channel, mice imaging, brain tumor

1. INTRODUCTION

Small animal models of human diseases constitute a major step for
in vivo evaluation of novel therapies. Preclinical imaging provides
quantitative data, allowing in vivo studies of therapy strategies. In
this work, we use 0.1T MRI data to follow the evolution of an ortho-
topic brain tumor model in mice. Two 3D isotropic datasets (T1 and
T2-weighted) are acquired in order to directly estimate the volume
of the tumor as well as the edema involving the neighboring tissues.
This volumetric approach differs from tumor size estimations with
2D parameters (such as the largest diameters), which are commonly
used in tumor models. Even though diameter measurements are fast
to perform and offer a first estimation of tumor volume, this method
relies on a gross approximation of the tumor’s shape with an ellip-
soid. To avoid such assumptions on tumor shape, volumetric 3D data
needs to be segmented to get a true estimation of tumor volumes. To
alleviate the segmentation task, which has been manually performed
so far, we propose a fully automated multi-phase and multi-channel
segmentation method, based on the level set framework of Chan and
Vese [1], which leads to an optimal partition of the image data in
n homogeneous phases. In our application, one or several phases
represent the tumor, thus simplifying computation of its volume, by
manually selecting a region of interest around it. While several seg-
mentation methods have been designed for brain tumor segmenta-
tion, as reviewed in [2], none were proposed based on a multiphase
level set framework. An analogous work from Drapaca et al. [3],
applied a multiphase level set segmentation framework to brain MRI
but was limited to a single protocol.

The remaining of this paper is organized as follows: In Section
2, we describe the data acquisition setup; In Section 3, we describe
the extension of the Chan and Vese [1] multi-phase level set frame-
work to combine T1 and T2-weighted information; In Section 4, we
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describe and discuss results from a clinical study on 18 mice data
sets comparing volumes measurements from manual thresholding,
multi-phase and multi-phase/multi-channel segmentation results.

2. DATA ACQUISITION SETUP

Animal experiments were conducted in compliance with the French
guidelines for the care and use of research animals (authorization
A6748220). Four adult female Swiss nude mice weighting approx-
imately 20g were inoculated with human glioblastoma cells (5.105

U-87-MG cells line in 5μL PBS) into the striatum of the right hemi-
sphere via a stereotactic injection at day 0.

Animals were weekly screened with MRI from week 1 to eu-
thanasia (week 4 or 5). MRIs were acquired using a dedicated 0.1T
resistive magnet (Bouhnik SAS, Velizy-Villacoublay, France) [4], as
previously described in [5]. During imaging procedures, mice were
maintained under gaseous anesthesia (isoflurane 1-1.5% in air) in a
warmed-up MR-compatible technical cell dedicated to small animal
imaging (Minerve, Esternay, France), which aimed at maintaining
the animal homeostasis and standardized the animal positioning. Af-
ter an intra-peritoneal injection of 1 mL of an MRI contrast agent,
gadoteric acid (Gd-DOTA, Dotarem, Guerbet, France) at a dose of
5-6 mmol/kg body weight, T1-weighted (FAST sequence, isotropic
voxel 0.5mm× 0.5mm× 0.5mm, TE 7ms; TR 100ms, 80◦, cubic
FOV 32mm, acquisition matrix 64× 64, 64 slices, NEX 8, acqui-
sition time 56min) and T2-weighted (FISP sequence, reconstructed
voxel 0.5mm× 0.5mm× 0.5mm, TE 14ms; TR 21ms, 70◦, cubic
FOV 32mm, acquisition matrix 64× 48, 32 slices, NEX 60, acquisi-
tion time 32min) images were acquired on the entire mouse brain.

A total of 18 data sets (T1 and T2-weighted) were acquired
during tumor growth. As already described in [5], the presence
of gadolinium contrast agent enlightens the tumor in T1-weighted
images and indicates that the blood brain barrier is broken. In
T2-weighted images, tumor tissue modifications and peri-tumoral
edema are both visible. The two MRI protocols provide complemen-
tary information on tumoral anatomy with a redundancy on tumor
tissue volume and the addition of the edema volume in T2-weighted
data.

3. MULTI-PHASE AND MULTI-CHANNEL
SEGMENTATION

In the present study, automated segmentation of joint T1- and T2-
weighted mice brain MRI data sets is a challenging task, due to
poor image resolution compared to the size of the observed struc-
tures, leading to partial volume effects and the absence of clear edges
defining structures. For this reason, we chose to use the Chan and
Vese [1] level set segmentation framework, based on the model of
Mumford-Shah [6], which enables to segment objects according to
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their average values. By doing so, we can detect zones which are
not delimited by sharp edges, but rather by a variation of their av-
erage intensities. In addition, working in a multi-phase framework
enables to detect several objects and, therefore, to be more sensi-
tive to small intensity variations. For the proposed application on
mice brain MRI data, using 8 phases, we were able to obtain at least
one phase including only tumoral tissue in all 18 cases. We fol-
lowed the implementation proposed by Chan and Vese in a level set
framework, which is based on the minimization of an energy func-
tional composed of a regularization term and a term that drives the
contours toward the interface of homogeneous regions in the image.
The level set framework also permits us to process n-D data with no
further adaptation of the method.

In this work, we used three level set functions so as to create up
to 23 phases, defined by the sign of the level set functions. Eight
phases were required to take into account the background, the brain,
the skull and scalp, one or two regions for the tumor and the edema,
and other tissues.

To simplify the notations, we recall the form of the energy func-
tional for only two level set functions Φ1 and Φ2, as applied in [7]
for brain segmentation. We first define a phase j ∈ {00, 01, 10, 11},
where, for example, the index 10 corresponds to Φ1 > 0 and Φ2 <
0. Let the heterogeneity measure for each point M of the image
I : Ω → R, given a real value cj associated to phase j, be defined
as:

zj(M) =
| I(M) − cj |α

(maxP∈Ω I(P ))α . (1)

We point out here that this function is commonly called a homo-
geneity measure in the original papers describing this segmentation
framework. Since level set functions are controlled by high values
of this function, we rather call it a heterogeneity measure, to be min-
imized in the optimization process. The positive exponent α was
taken equal to 0.4, thus departing from the traditional quadratic het-
erogeneity measure. This results in acceleration of the convergence
rate, as was shown in [8]. In this case, cj values are no longer com-
puted as average values on region j. Since it is difficult to provide an
analytic expression of cj for α = 0.4, we performed an exhaustive
search in the range of the pixel values in I , minimizing the derivative
of zj .

This heterogeneity measure is then used in the energy functional,
with c = (c00, c01, c10, c11) and Φ = (Φ1, Φ2):

E4(c, Φ) = ν

 X
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+
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Z
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Z
Ω

z10H(Φ1)(1 − H(Φ2))(M)dM

+

Z
Ω

z11H(Φ1)H(Φ2)(M)dM

(2)

where H is the Heaviside function. This functional can be mini-
mized with respect to c and Φ by the method of Euler-Lagrange (see
[1] for details). This optimization framework suffers from an impor-
tant limitation, since a given point M can only move from one phase
to another phase which differs from the first one by the sign of only
one level set function. Therefore, a point cannot be moved directly

Fig. 1. From left to right: IBSR phantom; 8-phase segmentation
result with the original implementation. Orange disks are residual
traces of initial conditions, composed of points which could not be
moved in the optimal region; 8-phase segmentation result with phase
relabelling. Only five distinct regions are present in this slice; 8-
phase segmentation result with phase relabelling (different slice with
added tumor and edema).

from phase (00) to phase (11), and must transit by either (10) or
(01). At the same time, during the minimization process, passing by
an intermediate phase is only possible when this operation decreases
the global energy, which is not the case in general (see Figure 1). A
proposed solution to avoid this type of local minima, which is even
more severe with eight phases, is to permute the phase labels along
the iterations, which permits all the transitions between phases to
happen. In the example provided in Figure 1, 250 iterations were re-
quired to perform all the necessary permutations on the phase labels.
With this modification of the numerical implementation, the method
performed robust segmentation of the 3D brain phantom (one man-
ually labeled IBSR dataset with a simulated 3D tumor and edema
added) with eight phases. All piece-wise constant tissues were cor-
rectly extracted. Although the phantom is noise free, extracting the
eight different tissues could still be challenging when evolving ex-
actly eight phases, given the existence of local minima in which the
segmented regions could be trapped. It was therefore necessary to
employ our phase relabelling, since the original implementation of
Chan and Vese was only able to extract six or seven regions, because
of the aforementioned problem. This is illustrated in Figure 1, where
only one slice of the volume is shown, with five distinct regions. We
always used the initialization recommended in [1] (i.e. cylinders
equally distributed in the image) as well as the semi-implicit scheme
described in the same paper, with Δt = 10 and ν = 1.5.

Multi-channel segmentation can be performed as an extension of
the multi-phase method, using a fusion rule between the heterogene-
ity measures zj

1 and zj
2, associated with two images I1, I2 : Ω → R.

A multi-channel framework has already been proposed by Chan,
Sandberg and Vese [9] (the so-called ‘vector model’) as an extension
of the two-phase Active contour without edges of Chan and Vese.
The same group of authors later improved their own method in [10],
by pointing out that the segmentation obtained by using a sum of
the heterogeneity measures over the different channels to fuse infor-
mation, as was done in their vector model [9], generally converges
to a local minimum of the energy. Their ‘logic-based framework’
corrected this limitation by using different fusion rules inside and
outside the contour, leading to a global optimal solution and a bet-
ter grasp of the logic operations performed by the model. However,
none of these methods was applied in the multi-phase case, and this
extension is another contribution of the present work.

In order to detect a region with a distinct intensity in at least
one image, we used the following fusion rule: max(zj

1, z
j
2) (which

is called a t-conorm in the fuzzy set theory) for every phase j. By
doing so, the heterogeneity measure remains high (close to 1) as
long as the corresponding phase is not homogeneous in all channels,
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Fig. 2. Left column: multi-channel test image with two observa-
tions of the same object (up and down); right: four binary objects
extracted by multi-channel segmentation.

leading to the possibility to detect all objects present in at least one
image, provided that we have enough phases. In the synthetic exam-
ple given in Figure 2, there are three distinct regions in each channel.
The multi-channel segmentation of these two images with the above
fusion rule led to the detection of four regions in the final segmenta-
tion. A linear combination of these four regions can be used to ex-
actly generate any of the two original images. When there are more
distinct regions than the number of phases, the regions associated
with the closest intensity in both channels are merged into one sin-
gle phase. In this general case, a linear combination of the regions
computed in the segmentation process can be used to approximate
any single image from the multi-channel data.

4. RESULTS AND DISCUSSION

In this clinical study, 18 mice brain datasets were acquired. The 3D
isotropic MRI data was manually processed using the ImageJ soft-
ware (Rasband WS, ImageJ, US NIH, Bethesda, Maryland, USA,
http://rsb.info.nih.gov/ij/, 1997-2007). In both T1 and T2-weighted
acquisitions, the tumor related volume of interest exhibited a hyper-
signal. Corresponding pixels were selected in axial slices by apply-
ing an upper threshold, which value was determined manually both
by visual data analysis and by considering the data grey level his-
togram. Thresholding was followed by manual erasing of selected
non-related areas, e.g. scalp or muscles in T1, and fat or eyes in
T2-weighted data. The number of selected voxels was multiplied by
the individual voxel volume (0.125mm3) to compute the tumor re-
lated volume. Two experimented observers independently measured
tumor volumes with this method in order to study inter-observer vari-
ation. One of the observers repeated the measurements three times
within a month in order to determine intra-observer variations.

Results are illustrated in Figure 3 for one case, and volumes
computed with manual and semi-automatic methods are visible in
Figure 4 (top). We also provide a graph of the linear correlation
between manual thresholding method (T1 and T2-weighted data)
and our multi-phase (MP) volume estimation applied to both single
channel T1 and T2-weighted data and T1 and T2-weighted multi-
channel (MC) data in Figure 4 (bottom). Table 1 summarizes those
results: correlation slope (Slope), intersection at the origin (y-int.)
and correlation coefficient (Corr. r) were computed. Manual thresh-
olding method reported a significant linear correlation with r=0.97
between the two independent observers. Intra-observer variation
showed a mean standard deviation of 9mm3 on tumor volumes which
are clearly statistically correlated (r=0.99). This method is thus re-
producible, but it is also time consuming and demands experimented

T1 man/ T1 man/ T2 man/ T2 man/
T1-MP MC-MP T2-MP MC-MP

Slope 0.56 0.97 0.75 0.83

y-int.
18.07 7.65 7.77 3.55(mm3)

Corr. r 0.74 0.97 0.97 0.92

Table 1. Evaluation of the tumor volume estimation: linear corre-
lation between gold standard T1 and T2 manual segmentations and
T1, T2 and multi-channel (MC) semi-automatic multi-phase (MP)
segmentations.

observers, which may explain why tumor growth are generally de-
scribed with radius measurements and ellipsoid models.

Our semi-automatic multi-phase and multi-channel segmenta-
tion method aims to reduce operator dependent tasks. Considering
the average over observers of the volume measures determined with
manual thresholding as the gold standard, we found for T1-weighted
data a correlation coefficient r=0.74 between the gold standard evalu-
ation and the results provided by the multi-phase segmentation (col-
umn T1/T1). For T2-weighted data, this correlation was r=0.97.
Applying the original multi-phase and multi-channel segmentation
increased the correlation coefficient to r=0.97 with a linear relation
slope close to 1 (0.97) between the gold standard in T1 and multi-
channel volumes. Considering the T2-weighted data, the correlation
decreases when applying the multi-channel segmentation (r=0.92)
while the slope becomes closer to 1 (0.75 to 0.83). These coeffi-
cients are in accordance with our observation that the multi-channel
segmentation tends to often converge to a solution with only one
phase containing the tumor, and that leaves the edema as well as the
scalp in other phases.

Analysis of these results shows that using the multi-channel seg-
mentation method, we could benefit from the information of both
T1- and T2-weighted data. In particular, while the tumor and the
edema can often not be separated in the T2 image, the result still
provides a necessary region for the location of the tumor. In ad-
dition, this necessary region generally excludes the scalp, which
has the same intensity range as the tumor in T1-weighted images,
therefore considerably reducing operator dependent decisions in the
multi-channel segmentation. Finally, given the limited number of
phases, only the most relevant structures of each images are repre-
sented in the segmentation, which significantly simplifies the results
and avoids to dedicate phases to partial volume effects.

Improvement is clearly demonstrated by a significant increase
in the correlation from T1/T1-MP to T1/MC-MP, driven by the fu-
sion rule used in the proposed framework. Yet, the multi-channel
segmentation was not always able to dedicate a phase to the edema,
therefore decreasing the correlation coefficient from T2/T2-MP to
T2/MC-MP segmentations. Since the target quantitative data de-
scribing tumor growth is the tumor volume, while the edema is only
a consequence of this disease process, the multi-channel segmenta-
tion could improve the study of tumor evolution. We believe how-
ever that the method could be further adapted to favor the presence
of two phases in the vicinity of the tumor.

5. CONCLUSION

In this work, we demonstrated the feasibility of a semi-automatic
computation of tumoral volumes on T1 and T2-weighted MRI of
mice bearing brain tumor. Our original multi-phase and multi-
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(a) (b)

(d) (e) (f)

(c)

Fig. 3. Mouse MRI study, T1 (a) and T2 (b) with a tumor (arrow).
Multi-channel (T1-T2) segmentation (c); multi-phase segmentation
of T1 (d) and T2 (e); 3D rendering of multi-channel tumor phase,
with arrow indicating the tumor (f).

Fig. 4. Tumor volume growth over the weeks for the different
segmentation methods (top) and linear correlation between semi-
automatic and manual segmentation methods (bottom).

channel segmentation method extends the models proposed by Chan
et al. and avoids one type of local minima affecting the original
implementation.
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