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Fig.1 Comparison of the LP minimization and the TV
minimization using the simulated 128%128 image: (a)
original image with Gaussian variation; (b) the image after
sparsifying transform using TV: (c) the reconstruction
difference using TV: (d) the image after sparsifying
transform using LP; and (e) the reconstruction difference
using the proposed LP minimization.

The minimization problem can be recast as a
second-order cone program (SOCP).
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Then the second-order conic function is defined as
T
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(4) can be solved with a generic log-barrier algorithm such
as the one being used in L;-magic [4, 6].
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performing FFT and e).itracting the radial lines in k-spacé.
Totally 30 radial lines. which is 21.8% of full k-space data.

are used to reconstruct the image.

Additional. a set of 6464 images are simulated with
noise to test the performance. The number of radial k-space
lines is 20 (28.3%) and 40 (51.6%). respectively. Both TV
and LP minimization are applied in the CS-MRI to
reconstruct images. To quantitatively compare the two
methods. the normalized mean squared error (NMSE).
computational time and signal-to-noise ratio (SNR) of the

Table 1 Quantitative comparison of the proposed LP
minimization and the TV minimization

Prjs | Data % | Method | NMSE Time (s) | SNR

20 | 283% [TV 2.5%107 | 38 116
LP 4.4*10* | 61 147

40 |51.6% | TV 9.2%10” | 34 99
LP 9.4%10 | 43 118

higher SNR. In addition, the proposed method takes longer

reconstruction time.

Fig.2 Comparison of LP and TV minimization for images
with different non-uniformity: (a) original image with linear
variation: (b — ¢) error images using TV or LP minimization:
(d) original image with 2D parabola variation: (e — f) error
images using TV or LP minimization.



Finally. an in-vivo spinal MRI dataset is used to test the
proposed method. The data is acquired using a 4-channel
linear array. The coil sensitivity creates a nonuniform
weighting in the image. In this experiment. the image size is
128*128. sixty radial k-space lines. which is 40.8% of full
k-space data. are used in the reconstruction.

Fig.3 Image reconstruction in the in-vivo MRI spinal array
experiment. (a) reference image reconstructed using full
k-space data: (b) reconstruction wusing the TV
minimization: (c¢) the corresponding error image: (d)
reconstruction using the LP minimization: and (e) the
corresponding reconstruction error image.
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The signal acquisition scheme for MRI can be expressed as

s(k) = / p(r)e > Tar, @ prior to the injection of a contrast agent. This pre-injection im-
age captures the underlying anatomical structure and can be used to
construct a generalized series (GS) for reconstruction of the contrast-
enhanced images with a small number of measurements [1]. Using

2.1. Proposed Model

We propose to model the target image as follows: ,
The GS basis, Yy (n,r), is given by Leg ()2 AKT where [

Z Cor (M) Wiy (m, 1) is a given referer.lce.: image. This set of basis is' used to absorb gen-
eral contrast variations between the reference image and the target

image. In this work, we employ a low-order GS model, i.e., GS

+ Z Cnew (1) Wnew(1,1)  (3)  coefficients that correspond to low frequency components. While
l€® low-order GS model is effective in capturing large, low frequency

: . . contrast changes, it is not efficient for modeling localized contrast
",’he re Yegs are the GS baSIS.funC.IIOI"lS, Vv are d_]e wavelet b?SlS func- changes. Thegsecond term of the proposed mogel is introduced to
tions, and Ypey are the pixel indicator functions (the Dirac delta ,gqress this deficiency of the low-order GS model through the use
functions in the continuous case or the Kronecker delta functions of wavelet basis which will capture the residual left by the low-order
in the discrete case); cgs, Cw . Cnew are the corresponding coefficients; GS model. This partial set of wavelet basis functions is selected
Q is the set of indexes of the selected wavelet basis functions and from a full wavelet basis based on prior information. Specifically
© is the set of indexes of the selected pixel indicator functions. The in this work, a wavelet transform is applied to the reference image,
index set Q represents the spectral support constraint and © often and basis functions with large coefficients are selected. Other sparse

represents spatial support constraint (defining a region of interest).

p(r)= ECgS(n)Wgs("s r)+

meQ)
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where Wgs, Wy, and Whew are matrix operators whose columns are
Ves, Ww and Wy, respectively. Thus, Whew = L. g5, €y, Chew
are the corresponding coefficient vectors. A; and A, are regular-
ization parameters. || -||7y is the discretized total-variation opera-

Equation (4) can be rewritten as:
N - R
argmin ||F¥¢ —d|[5+ f(c)
¢ i

Cog

g8
where ¥ = (W Wy, Whewl.c= | ¢y
Cnew
For the anisotropic total-variation case, we have:

f(c)=|Be|
where
A.]H“,
B=| LD Hpew |.Hyc=cy, Hypow € = Crow-
ADoH, o

For the isotropic total-variation case, we apply the operator split-
ting method [13] to Eq. (4):

3. EXPERIMENTS

the target image. The global contrast variation is captured by a set
of 16 x 16 low-order GS basis functions. Since accurate registration
is essential for GS modeling, the reference image is registered to the
target image before the GS basis is constructed. This is done using

Fig. 1. a) Reference image used to build into the GS basis and b) the
tareet image.



proposed model. 18000 (out of 65536) wavelet basis functions, two-
level Haar wavelet is used here, are selected to capture the localized
changes. In addition, a narrow dark line was added to the target im-
age, mimicking the effect of a needle being inserted into the object
(e.g., in interventional MRI). The deformation of the surrounding
tissue can be captured by the wavelet functions and the pixel/voxel
indicator functions. The support of the needle is shown in Fig. 2a as
a white rectangular. Variable density random sampling pattern was
used for data acquisition [3].

(b) CS(TV)

(c) Diff. CS(TV)

(d) Proposed

The proposed method was compared with two conventional CS-
based reconstruction schemes. The first one uses TV regularization
on the entire image (CS (TV)), and the second uses TV regulariza-
tion on the difference of the reference image and the target image
(Diff. CS (TV)). The anisotropic total-variation is used in all the
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Fig. 3. Reconstruction errors of three different methods.
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Fig. 4. Improved compressibility using GS model. a) Compression
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bias from many images simultaneously. In this work, how- Specifically, consider the sparse representations of y;. and
ever, we propose a non-parametric compressed sensing based  y} as x; and x}, respectively. Then Eqn. 3 gives,

intensity non-uniformity correction (CSI-NC) approach that

does not have any explicit smoothness model on the estimated % = argmin{|[yx — ®x|[5 + Al[x][1},x > 0 (5)
field and does not require many images, thus being more ver- *
satile and applicable to situations where the actual ITH is not
smooth, e.g. in 7T images.

%} = argmin{||yz — ®x|[3 + X*|[x[[1}.x = 0 (6)
X

. ) Now if yi. = gy, Eqn. 5 gives,
% = argmin{||y — ®x|13 + Alx||:}. "

2.2. Patch Based Correction % = argmindllgnyi — ®x|lz + A},
Assume the MR image is partitioned into p x g x r patches. . , f X2 Al x -
the bias field is not globally smooth, then we can assume th % = &r8Mn 1¥i - 5”2 + gk || gr ||, (1)

it is at least uniform over a small image patch. Let d = pqg
thus each patch can be thought of as a d x 1 vector. Assumii BY appropriate conditions on @ as described earlier, and

that the gain field is multiplicative, each image patch y; ¢hoosing A = giA*, Eqn. 7 and Eqn. 6 give X = Xjg;.
R4, k < Q. can be written as Thus, an appropriate estimator of g;. is given by,

Yk = gk¥k + ks gk >0 ( Ik = (8)
Here, (2 is the image domain, yj is the inhomogeneity free

image patch, gy is the bias field for k" location, and 7 is the

image noise. For further analysis, for simplicity we assume

that i, = 0, Vk.



2.3. Choice of X} and ®

Eqn. 8 suggests that in an ideal situation, if two inhomogene-
ity free patches y; and y; are of same the tissue and have the
same intensity, then X7 = X} and g;  [[X;1, i.e., the L,

gain field for the same tissue.

For a particular k, X, can be found using a prior infor-
mation about the tissue classes, which can be obtained from
a segmentation of the image. The image being already cor-
rupted with ITH, we only need an approximate segmentation
of the image. In our experiments, we have used an atlas based
segmentation called TOADS [16] that uses a probability atlas

Here we note that all images are normalized, so that their
WM peaks have the same value. The final inhomogeneity
field becomes blocky because there is no explicit smoothness
criterion on the image model. As a post-processing step, we
smooth the field by a Gaussian filter with size o, that we esti-
mate based on phantom validation, described in the next sec-
tion. The filter also smooths out bad estimates of X1’s near
the tissue boundaries.

The compressed sensing literature suggests that a good
norm of the sparse representation gives the relative amount of choice of @ is a random matrix. For our experiments, we
generate ®’s from a uniform distribution once.

The algorithm is described as follows,

1.

Partition the image into patches y, k € () of size p x
q x r. In our experiments, p = ¢ = r = 3. Generate
a random d x N matrix ®. In our experiments, we
arbitrarily select N = 1000.

Find an approximate segmentation of the image using
TOADS and compute the mean y()’s that represents
the I*" class, | = 1,...,4. Find the corresponding
x*(1)’s using @ in Eqn. 5.

For each £, find the type of the tissue [y € {1,...,4}
that yi. belongs to. If there is more than one tissue type
in y ., we choose the dominant one for simplicity. Then
X5 =x*(lo)

Find the sparse representation of y;. as X;. from Eqn. 5.
We use A = 0.5.

Find the gain field g;. using X;. and X*(ly) using Eqn. 8.
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Fig. 3. (a) Original inhomogeneity free image, (b) cor-
rupted by 20% INU as described in [17], (¢) N3 corrected
image, (d) CSI-NC corrected image, (e) crude segmenta-
tion by TOADS [16] that is used to find x*(I) described in
Sec. 2.3, (f) true inhomogeneity field “C”, (g) N3 inhomo-
geneity field, (h) CSI-NC field, smoothed by a Gaussian filter
of size 0 = 10mm.

fashion in a high-dimensional parameter space. Instead, we
employ a patch based method. We use both CSI-NC and N3
on Philips 7T MPRAGE (magnetization prepared rapid gra-
dient echo) and FLAIR (fluid attenuated inversion recovery)
images, 256 x 320 x 320 volumes, 0.70mm isotropic.

Fig. 4. (a) Original 7T FLAIR image, (b) N3 corrected
FLAIR, (¢) CSI-NC corrected image, (d) N3 field, (e)
smoothed field from CSI-NC, smoothed by Gaussian filter of
size 10mm, (f) a sagittal view of the original FLAIR, (g) sagit-
tal view of N3 corrected image, (h) sagittal view of CSI-NC
corrected image. As N3 assumes an underlying smoothness
model on the inhomogeneity, small localized inhomogeneity
that are present in small tissue structures are not corrected.



Fig. 5. (a) Original 7T MPRAGE image, (b) correction by
N3, (c) correction by CSI-NC, (d) a zoomed in version of the
original MPRAGE, (e) inner cortical surface [18] generated
from the N3 corrected image (yellow) and (f) from CSI-NC
corrected image (green), overlaid on the original MPRAGE.



