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Fig. 2. 3-Means classification of a T] MR image. The intensities are
mapped to three different labels, segmenting it into three areas.

1" Brain Organism Deformation

2" Brain Organism Deformation

Fig. 3. The flow of data and steps of the algorithm. The red arrow
shows processing steps for the image and the black arrows represent
information that is being passed.



2.2.1. Geomertry and Physics

Each deformable organism is represented geometrically as a 3D tri-
angulated mesh. The models are initialized in the shapes of spheres
that either contract or expand to find the boundary of the object be-
ing modeled. Each geometric model is deformed iteratively to model
different structures in the MR images. Each vertex on the mesh is
moved either inwards or outwards along the direction of the normal
vector at that point. At each iteration, Laplacian smoothing is ap-
plied to the mesh to constrain the movement of each vertex in order
to maintain a smooth mesh that does not pass through itself.

2.2.2. Perception

The perception layer enables the organism to sense the medical im-
age in which it is embedded. The vertices of the triangulated mesh
are represented in real coordinates embedded in a volume image rep-
resented by a set of voxels. Hence, nearest neighbor interpolation

2.2.3. Motor Control

The motor control of the organism is a function of intensities along
the line normal to the mesh surface going through each vertex. The
intensities along this line are from the images available to the per-
ception layer. This layer looks for or avoids a particular intensity or
relative intensity or tries to fit a certain model or statistic to the data
along these lines. The intensities along the normal lines are sampled



2.2.4. Behavior

The organism has a repertoire of behaviors. Translation is a behavior
that moves a particular organism rigidly without any deformation to
the mesh, as does the rotation behavior. These behaviors can take
into account the organism’s relationship to other organisms and use
information about their locations to decide how to move rigidly. An-
other behavior is the local deformation of the mesh. This behavior

2.2.5. Cognition

The cognitive layer is created by putting together a set of behaviors
to accomplish certain goals. Different behaviors can be activated
dynamically depending on what goals have been accomplished or

what features have or need to be located.

Fig. 4. This figure shows the sequential steps that the skin (yellow),
eye (red), and brain (cyan) organisms use to skull-strip the head im-

Method Jaccard Dice Sensitivity Specificity
DO 0.8954+0.0288 0.94463-0.0163 0.9616=0.0129 0.9864=0.0082
BSE 0.9431:0.0282 0.9705+0.0158 0.9747+0.0334 0.9941=0.0019
BET 0.9310:0.0089 0.96421+0.0048 0.9875=0.0117 0.9892+0.0014
HWA  0.8537+0.0184 0.92100.0107 0.9992=0.0003 0.9695+0.0053

Fig. 5. Interactions between the brain (cyan), eye (red), and skin
(vellow) organisms. The arrows (blue) in Subfigure A show how
the brain organism is expanding and Subfigure B has arrows (red)
showing how its movement is restricted by the other organisms.

interactions during the skull-stripping process. The skin organism
is initialized as a large spherical triangulated mesh that is deformed
into the surface of the head using the threshold of the initial MR
image (Fig. 4A and 4B). The skin organism is then processed to
locate the nose. This information is used to locate the eyes (Fig.
4C and 4D). Figure 4D shows the two eye organisms expanded to
the full size of the eye by sensing the 3-Means classification of the
MR image. Once this is complete, the skin organism again deforms
to locate the area surrounding the brain by deforming through the
eyes by sensing their locations and by using edge information from
the 2-Means classified image as shown in Fig. 4E. In Fig. 4F, the
eyes are again deformed by sensing the 2-Means image to take into
account the surrounding tissues and to restrict more areas that the
brain organism may try to expand into. Then using the location of
the eyes and skin meshes a brain organism is spawned (Fig. 4G)
that deforms itself to match the classification of tissues in the 3-
Means image and to stay within the skin mesh and complete the
segmentation of the brain (Fig. 4H).
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2. METHODS
2.1. Overview

We propose a novel approach to local MS lesion
characterization for segmenting brain MRI of MS patients.
Our goal is to take aligned Tlw, T2w, and FLAIR MR
images of an MS patient, detect voxels with an abnormal
intensity level when compared to the expected value in a
population of healthy subjects.

Our algorithm starts with a library of MRI images
representing typical healthy subjects comparable in age to
the study subject. Each reference subject image is then
registered to the MS patient being segmented. Because MR
image intensity varies from scan to scan due to the MRI
acquisition process, intensity levels from each reference
subject were normalized to match the intensity distribution
in the MS patient. Finally, intensity levels between the study
subject and the reference population were compared, voxel-
by-voxel, by means of the Mahalanobis distance.

The local comparison between the study subject and a
reference population of intensity values vyields a

measurement of the MS subject voxel intensity typicality
that highlights brain locations with an unexpected intensity

value such as MS lesions.

2.2 Reference Healthy Population Data

To evaluate the typicality of voxel intensity value from
an MS subject, a group of 15 volunteers was used as the
normal reference database.

After image acquisition, the T2w and FLAIR images
were aligned to the T1lw scan. In addition, all acquired MR
images were re-oriented to an axial orientation and then the
intra-cranial cavity was manually segmented.

2.3 Healthy Population Non-Rigid Registration

To evaluate a voxel's intensity value typicality, both the
study subject and the reference database have to be aligned
to the same reference space. Due to anatomical variability
among subjects and the presence of MS lesions, a robust,
block-matching based non-linear registration was used; this
method extended the rigid registration algorithm proposed
by [5].



2.4 Intensity Normalization

Because of the anatomical abnormalities (MS lesions)
present in the scans we want to normalize, an algorithm that
does not rely on any pre specified model was chosen. To this
purpose, we used the intensity normalization method
proposed in [6]. Weisenfeld et al. developed a novel
approach for normalizing the intensities within an image to
best match a supplied histogram model, which can be
generated by any representative subject, allowing to proceed
without assumptions about the shape of the histogram or the
specific contribution of a given class of tissue.

For our purposes, a histogram model was provided to
the intensity normalization algorithm for each of the MR
modalities (Tlw, T2w and FLAIR) from the MS patient.
Finally, intensity levels from each reference subject were
normalized to match the given histogram model.

Figure 1: Demonstration of the proposed extended feature space.
From left to right: Tlw scan, T2w scan, FLAIR scan, and
Mahalanobis distance map. Notice how higher values in the
Mahalanobis distance map correspond with MS lesions (hyper- or
hypo-intensity voxels in anatomical MRI).

2.5 Classifier Extended Feature Space Generation

Mahalanobis distance is a measure between two data
points in the space defined by relevant features. Since it
accounts for unequal variances as well as correlations
between features; it will adequately evaluate the distance by
assigning different weights or importance factors to the
features of data points. This weighting will assign
components with high wvariability less weight than
components with low variability. The Mahalanobis distance
1s written as:

f \ . " | 'T _1 f \
M llxi.)_ \ (‘Xi_ ) X X — 1
Equation 1: Mahalanobis distance

where x; is a vector composed by the MS subject, T1lw,
T2w, and FLAIR scans intensity values at voxel i, J; is the
mean intensity vector at the healthy reference population,
and Z; is the healthy population intensity covariance matrix
at the location of voxel i. An image based on this equation
is depicted in Figure 1.



3. VALIDATION

To evaluate the performance of this novel extended feature
space, ftraining subjects from the MS MICCAI 2008
database were used. The training database consists of 20
subjects provided by the University of North Carolina at
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Figure 2: Intensity outliers MS lesion classification sensitivity and
specificity values.
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Figure 4: MS lesion PPV and FDR values. Reported in blue are
intensity feature space results; in orange, the extended feature
space results. The extended feature space allows a much more
precise MS lesion segmentation.
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(c) Chimpanzee sagittal (d) Human sagittal

(a) Chimpanzee axial (b) Human axial Fig. 1. Human and chimpanzee brain differences. (a) and
(b) axial views show the surrounding tissues of the brain are

thicker in chimpanzee. (c) and (d) sagittal views show
different relative orentations of the anterior-posterior
commissures and the spinal cord. (a) and (b) show on the
same scale that the chimpanzee brain size is smaller than the

huiman nna




2.2. Brain global shape computation

@

Fig. 2. Brain hull mesh processing illustration. (a) Brain
hull algorithm computation with: V; the initial vertex
position of the subdivided convex hull; Vs the final vertex
position of the brain hull; -n the opposite normal vertex
displacement direction. (b) Brain hull meshes superposed on
a human brain hemispheric surfaces. (c) A chimpanzee
brain hemispheric meshes output from BrainVisa. (d) The
chimpanzee hemispheric brain hulls computed.

2.3. Brain bilateral asymmetries evaluation

The typical Yakovlevian torque human bramn asymmetry of
nght-handed subjects 1s illustrated in Figure 3 as a

.......... -l bl bl b s e A Vo AL
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Fig. 3. Global brain asymmetries in right-handed human
subjects when viewed from above. (a) Anterior (resp.
posterior) protrusion of the brain in the right as compared to
the left frontal lobe (resp. in the left as compared to the right
occipital lobe). (b) Leftward frontal lobe and rightward
occipital lobe deviation of the inter-hemispheric fissure.

» First step: Finding the symmetry plane.

We define the approximate symmetry plane P of a mesh X'
as the one best superposing X and its reflection Sp(X) about
P_For that, we consider X as a noised version of SpX). This
allows to consider each point xi of X as the realization of a
random variable whose distribution is a mixture model
composed of card(X) Gaussian laws N(Sp(xz), o’?I), xpe X
Then we define the optimal reflection Sp as a ML estimate,
which is computed using an EM algorithm. The use of a
multiscale strategy and of a truncated Gaussian kemnel

allows a fast, accurate and robust estimation of the plane
[20].



* Second step: Registering X on Sp(X).

Once P i1s known, we define the asymmetry field of X as
(t(x) = T(x) — X)ry Where T is the non linear transformation
best superposing X and SpX). For that, we consider T
(Sp(X)) as a noised version of X (here Sp is known). Then we
design a MAP approach by specifying 1) a prior on T (a
global affine model + a local order-one Tikhonov
regulanization on the linear component (t(x)) x), i) a
mixture density for the set T(Sp(X)) and i) a prion
probabilities of matching between points of the two meshes
(using geometrical descriptors almost invariant to the
unknown transformation). Then, this MAP problem 1s
solved using an EM algorithm [21].

» Third step: Mapping the asymmetry field

In order to provide specific results, we choose to analyze the
asymmetry field by looking at its three components
separately. This simply consists in projecting the asymmetry
vector on the three coordinate axes and this yields the:

- postero-anterior component (difference in protrusion);
- left-right component (difference in width);
- head-foot component.

In the following, we call s, ¥ the scalar asymmetry mapping
at point x; of mesh X and ¥ the asymmetry map of X. Each
subject has thus three asymmetry maps.

2.3.2 Generafion of a mean shape & projection of the
mapping

» First step: Computing the mean shape

Individual asymmetry maps S* (X & {Xj,... X}) have to be
put In a common geometry to be compared. For this
purpose, we compute the mean mesh M, defined as the mesh
closest to all the meshes in the dataset (in a sense to be
defined). In practice, we formulate the mean shape

estimation as an iterative scheme that consists in the
successive estimation of 1) the mean shape and 11) the
optimal similarity transformations between each mesh and
the mean mesh [22

» Second step: Individual projection of the asymmetry
mapping

Together with the mean shape M. the previous algorithm
provides us with the a posterior: probability that each point
m; of M is matched with a point x; of X we call th.is
probability 45 (X4 = 1). This probabxhty is used to ‘Pt
each individual asymmetry map on M. We call s
mapping information of IPIOJeCted on point m; of M and
define it as 57 = 2iAgsi.



* Third step: Population statistical asymmetry maps

At this point we now have a collection of n (*3) scalar
asymmetry maps gt st projected on a common
mean mesh M. We compute a point-wise mean and t-test
(corrected for multiple comparisons) on each of the three
components of the asymmetry field over the population. The
correction for multiple comparisons 1s performed as
described in [23] by 1) fixing a supra-threshold p = 0.05, 11)
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Fig. 4. Asymmetry maps direction definition. Orthogonal
components of the deformation field which are in the same
(resp. opposite) direction as their positive axis definition
have positive (resp. negative) values. A color map is used to
represent the signed scalar values of the deformation field.

significant. The p-values maps are computed according to
the t-test with the null hypothesis that there is no asymmetry
at the significance level p=0.05 (corrected). Red color

indicates with more confidence regions with asymmetries.
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Fig. 6. Humans asymmetry maps and p-values. (a) Front
view of night-left component. (b) Back view of right-left
component. (c) Front view of posterior-anterior component.
(d) Back view of posterior-anterior component. (e) p-values
back view of night-left component (resp. to b). (f) p-values
back view of posterior-anterior component (resp. to d).
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Fig. 7. Chimpanzees asymmetry maps and p-values. Fig. 9. Chimpanzees and humans right-left p-values.

(a) Front view of right-left component. (b) Back view of (2) Humans left side view. (b) Chimpa_nzees left side view.
right-left component. (c) Front view of posterior-anterior F -values have @e same legend as previous figures (0; 0.05)
component. (d) Back view of posterior-anterior component. for both populations.

(e) p-values front view of right-left component (resp. to a).

(f) p-values back view of right-left component (resp. to b).



