

Challenges in Dynamic Imaging Data - 9-11 June 2015 TGM - Isaac Newton Institute - Cambridge

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Introduc	tion					

What is inpainting?

What is inpainting?

- Removal and filling of a region in an image or video
- The inpainted region should be visually convincing/pleasing

Image to inpaint

Inpainted image

What is inpainting?

- Removal and filling of a region in an image or video
- The inpainted region should be visually convincing/pleasing

Image to inpaint

Inpainted image

What is inpainting useful for?

- Restoring/improving/modifying images/videos
- Post-production of films

Original

Restored

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Introduc	ction					

Video inpainting

Inpainted video

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Introduc	ction					

Video inpainting

Original video

Challenges in *image* inpainting

 Filling-in geometric structures (amodal completion) [Masnou & Morel 1998], [Bertalmio et al. 2000]

Challenges in *image* inpainting

- Filling-in geometric structures (amodal completion) [Masnou & Morel 1998], [Bertalmio et al. 2000]
- Texture synthesis [Efros & Leung 1999]

Challenges in *image* inpainting

- Filling-in geometric structures (amodal completion) [Masnou & Morel 1998], [Bertalmio et al. 2000]
- Texture synthesis [Efros & Leung 1999]
- Geometry + conditional texture synthesis

[Cao et al. 2011]

Additional challenges of video inpainting

- Temporal coherency
- Dynamic geometry (reconstruction of moving objects)
- *Dynamic texture* (water pouring, flowing, flames)
- Simultaneous foreground/background reconstruction
- Extremely long computational times

Inpainting example (from Wexler *et al.* 2007)

 Introduction
 Algorithm
 ANN Search
 Textures 000000000
 Multiscale
 Results
 Persepectives

 Proposed inpainting algorithm
 Persepectives
 Persepectives
 Persepectives
 Persepectives

Exemplar-based inpainting Similar to [Wexler 2004] (video inpainting) and [Arias et al. 2012] (image inpainting)

Key ingredients

- spatio-temporal patches
- alternated minimization of bi-convex energy
- multi-scale coarse-to-fine model
- accelerated ANN search
- texture-aware distance between patches
- how many scales?
- motion compensation

Video inpainting notation

 $\phi \quad \begin{array}{l} \text{Shift map (nearest} \\ \text{neighbour offsets)} \end{array}$

 ${\mathcal D}$ Unoccluded region

 ${\mathcal H}$ Occlusion

 W_p : a patch centered at p

Input: $u|_{\mathcal{D}}$ Output: $u|_{\mathcal{H}}$ Find $u|_{\mathcal{H}}$ by minimizing

$$E(u,\phi) = \sum_{p \in \mathcal{H}} ||W_p^u - W_{p+\phi(p)}^u||_2^2$$

 W_p : a patch centered at p

Inpainting Principle

Input: $u|_{\mathcal{D}}$ Output: $u|_{\mathcal{H}}$ Find $u|_{\mathcal{H}}$ by minimizing

$$E(u,\phi) = \sum_{p \in \mathcal{H}} ||W_p^u - W_{p+\phi(p)}^u||_2^2$$

 $W_p\colon$ a patch centered at p

Challenges

- non-convex energy
- high dimensionality (dimension = $5 \times 5 \times 5 \times 3 \approx 500$)

Solutions

- alternate (convex) minimization w.r.t. u and ϕ
- coarse-to-fine processing
- approximate nearest neighbours
- fine-level texture features in coarsest level

Inpainting Principle

Input: $u|_{\mathcal{D}}$ Output: $u|_{\mathcal{H}}$ Find $u|_{\mathcal{H}}$ by minimizing

$$E(u,\phi) = \sum_{p \in \mathcal{H}} ||W_p^u - W_{p+\phi(p)}^u||_2^2$$

 $W_p\colon$ a patch centered at p

Denoising Principle

Input: noisy \tilde{u} Output: denoised \hat{u} Find u by minimizing

$$E(u,w) = \sum_{p,q} w(p,q) ||W_p^{\tilde{u}} - W_q^{u}||_2^2$$
$$+ h \sum_p H(w(p,\cdot))$$

Inpainting Principle

Input: $u|_{\mathcal{D}}$ Output: $u|_{\mathcal{H}}$ Find $u|_{\mathcal{H}}$ by minimizing

$$E(u,\phi) = \sum_{p \in \mathcal{H}} ||W_p^u - W_{p+\phi(p)}^u||_2^2$$

 $W_p\!\!:$ a patch centered at p

Algorithm (inspired by \dagger and \ddagger):

Alternate Minimization on u and ϕ :

 $\begin{array}{l} u^{0} \leftarrow \text{Initialisation}(u|_{\mathcal{D}},\mathcal{H}) \\ 1/ \ \phi^{k+1} \leftarrow \text{NearestNeighbourSearch}(u^{k}) \\ 2/ \ u^{k+1} \leftarrow \text{VideoReconstruction}(\phi^{k+1}) \\ (\text{aggregation of patches}) \end{array}$

(Carried out in a Multiresolution scheme)

[†] Y. Wexler, E. Schechtman, M. Irani, Space-Time Completion of Video, PAMI 2007 [‡] P. Arias, G. Facciolo, V. Caselles, G. Sapiro, A Variational Framework for Exemplar-Based Image Inpainting, IJCV 2011

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives

Approximate Nearest Neighbour (ANN) search

High dimensionality of problem means NN search is very slow

- Previously used ANN search algorithm (kdTrees) very slow
- We extend the PatchMatch [Barnes *et al.* 2009][†] algorithm to spatio-temporal case.
- $\bullet\,$ PatchMatch based on piecewise constancy of the shift map ϕ

[†] C. Barnes, E. Schechtman, A. Finkelstein, D. B. Goldman, PatchMatch: a randomized correspondence algorithm for structural image editing, ACM Transactions on Graphics (2009)

 Introduction
 Algorithm
 ANN Search
 Textures
 Multiscale
 Results
 Persepectives

 Visual comparisons
 [Granados et al. 2012]
 Image: Comparison of the second second

High definition example (1120 \times 754)

- 10-50 times speedup with 3D PatchMatch
- 10 times speedup compared to Granados *et al.*

M. Granados, J. Tompkin, K.I. Kim, O. Grau, J. Kautz, C. Theobalt, How Not to Be Seen - Object Removal from Videos of Crowded Scenes, Computer Graphics Forum, 2012

 Introduction
 Algorithm
 ANN Search
 Textures
 Multiscale
 Results
 Persepectives

 Visual comparisons
 [Granados et al. 2012]
 Image: Comparison of the second second

	One matching pass at full res.					
	Beach umbrella (265x68x200)	Crossing ladies (170x80x87)	Jumping girl (1120x754x200)			
Wexler (kd-tree)	$\sim \! 1000 s$	~1000s	~8000s			
Ours (PatchMatch3D)	$\sim 50 s$	~30s	~150s			
		Total timing				
	Beach umbrella (265x68x200)	Duo (960x704x154)	Museum (1120x754x200)			
Granados (graph-cut)	11h		90h			
Ours w/o texture	14mn	4h	4h			
Ours	24mn	6h	6h			

Introduction	Algorithm	ANN Search	Textures	Multiscale	Results	Persepectives

Textures in image/video inpainting

Why do textures pose a problem ?

Original image

Why do textures pose a problem ?

Inpainted image

Why do textures pose a problem ?

Incorrect approximate nearest neighbours

Imagine we want to find the ANN of a random patch:

Imagine we want to find the ANN of a *random* patch:

$$\begin{array}{c} \mathbf{X} \\ x_i \sim \mathcal{N}(\mu, \sigma^2) \\ i = 1 \cdots N \end{array} \qquad \begin{array}{c} \mathbf{Y} \\ \mathbf{y}_i \sim \mathcal{N}(\mu, \sigma^2) \\ \text{Which patch is} \\ \text{most similar to } \mathbf{X}? \end{array} \qquad \begin{array}{c} \mathbf{Y} \\ \mathbf{y}_i \sim \mathcal{N}(\mu, \sigma^2) \\ i = 1 \cdots N \end{array}$$

$$E[d(X, Y)] = 2N\sigma^2$$
$$E[d(X, Z)] = N\sigma^2$$

Imagine we want to find the ANN of a *random* patch:

 $E[d(X, Y)] = 2N\sigma^2$ $E[d(X, Z)] = N\sigma^2$

On average, d(X, Y) is *twice* as large as d(X, Z). On average, constant patch Z is preferred !

Imagine we want to find the ANN of a *random* patch:

On average, d(X, Y) is *twice* as large as d(X, Z). On average, constant patch Z is preferred ! Solution ? Change patch distance !

We wish to include some information pertaining to the texture.

Idea : include an estimation of the local variance

We wish to include some information pertaining to the texture.

Idea : include an estimation of the local variance

Different possibilities were tested. Finally, we chose (inspired by Liu and Caselles $2013^\dagger)$:

SSD:
$$[\mathsf{R}, \mathsf{G}, \mathsf{B}, \alpha g_{\nu} * |\nabla_x I|, \alpha g_{\nu} * |\nabla_y I|]$$

 $\alpha:$ a weighting scalar

 $g_{
u}$ in a gaussian kernel of size u .

[†] Y. Liu, V. Caselles, Exemplar-Based Image Inpainting Using Multiscale Graph Cuts, IEEE TIP (2013) [‡] J. Bruna & S. Mallat (2013). Invariant scattering convolution networks. IEEE TPAMI, 35(8), 187286 Introduction

n ANN Search

Textures ○0●000000 Multiscale

Results Pe

Persepectives

Modified patch distance

Example of image created by $|\nabla_x I|_{\nu}$

Example of the impact of the modified distance

PatchMatch with regular SSD

Example of the impact of the modified distance

PatchMatch with modified SSD

Introduction	Algorithm	ANN Search	Textures ○000●0000	Multiscale	Results	Persepectives
Image e	example					

Inpainting with unmodified patch distance

Introduction	Algorithm	ANN Search	Textures ○000●0000	Multiscale	Results	Persepectives
Image e	xample					

Inpainting with "Image Melding" (Darabi et al. 2012)

Introduction	Algorithm	ANN Search	Textures ○000●0000	Multiscale	Results	Persepectives
Image e	example					

Inpainting with modified patch distance

Introduction	Algorithm	ANN Search	Textures ○000●0000	Multiscale	Results	Persepectives
Image e	example					

Original image

Introduction	Algorithm	ANN Search	Textures ○0000●○○○	Multiscale	Results	Persepectives
Noise ex	xample					

Inpainting with unmodified patch distance

Introduction	Algorithm	ANN Search	Textures ○0000●○○○	Multiscale	Results	Persepectives
Noise ex	xample					

Inpainting with modified patch distance

Introduction	Algorithm	ANN Search	Textures ○0000●○○○	Multiscale	Results	Persepectives
Noise e	xample					

Inpainting with unmodified patch distance

Introduction	Algorithm	ANN Search	Textures ○0000●000	Multiscale	Results	Persepectives
Noise ex	xample					

Inpainting with modified patch distance

Introduction	Algorithm	ANN Search	Textures ○○○○○●○○	Multiscale	Results	Persepectives
Video e	xample					

Original video

Introduction	Algorithm	ANN Search	Textures ○○○○○○●○	Multiscale	Results	Persepectives
Video ex	xample					

Unmodified patch distance

Introduction	Algorithm	ANN Search	Textures ○○○○○○○●	Multiscale	Results	Persepectives
Video ex	xample					

Modified patch distance

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives

Local minima, convergence and binary inpainting

The *multi-resolution* scheme is necessary to correctly inpaint

Occluded image

structures.

Result with one pyramid level

Result with three pyramid levels

The *multi-resolution* scheme is necessary to correctly inpaint structures.

Occluded image

Result with one pyramid

level

Result with three pyramid levels

Some interesting questions:

- Can we quantify the amount of subsampling needed ?
- Can we guarantee convergence to a desirable solution ?

Such questions are difficult to answer in general, so we use a simple situation !

The *multi-resolution* scheme is necessary to correctly inpaint structures.

Occluded image

Result with one pyramid

level

Result with three pyramid levels

- Study (very) simple situation
- Behaviour of the algorithm is easier to study

Main theoretical results in simple 1D case :

- Algorithm converges if the occlusion size is less than $2N 2\sqrt{N} + 1$
 - *N* is the patch size
- Otherwise, algorithm may be stuck in a local minimum

Main theoretical results in simple 1D case :

- Algorithm converges if the occlusion size is less than $2N 2\sqrt{N} + 1$
 - N is the patch size
- Otherwise, algorithm may be stuck in a local minimum

Verified for simple 2D situations.

Simple structure example. Patch size = 11×11

Occlusion size = 16 Occlusion size = 17

Introduction	Algorithm	AININ Search	000000000000000	Multiscale	Results	Persepectives
Inpainti	ng result	S				

Original video

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Inpainti	ng result	S				

Our inpainting result

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Inpainti	ng result	S				

Original video

Introduction	Algorithm	ANN Search	Textures 000000000	Multiscale	Results	Persepectives
Inpainti	ng result	S				

Our inpainting result

- complex motions
- long temporal occlusions
- select the patch size

Input image (occlusion border in red)

Patch size = 3×3

Patch size = 5×5

Patch size = 7×7

Patch size = 9×9

Patch size = 11×11

- More general features to discriminate dynamic textures and shapes
 - Motion features
 - True multi-scale criterion
 - Scattering transform [Bruna & Mallat 2013][†]
- Generative vs. deterministic inpainting:
 - Sample from a local conditional gaussian model instead of NN [Raad *et al.* 2015][‡]
 - Accelerated learning/querying of local Gaussian models [Guillemot *et al.* 2014]*

[†] Bruna, J., & Mallat, S. (2013). Invariant scattering convolution networks. IEEE TPAMI, 35(8), 187286

L. Raad, A. Desolneux, J-M. Morel (2014), Locally Gaussian Exemplar-Based Texture Synthesis

^{*} T. Guillemot, A. Almansa, T. Boubekeur, **Covariance Trees for 2D and 3D processing**, CVPR 2014. http://perso.telecom-paristech.fr/~boubek/papers/CovTree/

THANK YOU FOR LISTENING !

- More videos / paper / source-code: http://perso.enst.fr/~almansa/video_inpainting/
- Come see our **poster** on

Single-Shot High Dynamic Range Imaging !!

Open PhD Position

Subject Video Inpainting Location Paris and/or Lyon Supervisors A. Almansa, Y. Gousseau, S. Masnou